

CE432A Project GROUP 1 PRESENTATION

Instructors: Prof. Bharat Lohani & Prof. B Nagarajan

Department of Civil Engineering, IIT Kanpur

Aman Kumar Singh	200100
Ritik Raj	200804
Nikhil Singh	200636
Tarun Yadav	201048
Utkarsh Srivastava	201070

Acknowledgements

- We would like to express our sincere gratitude and appreciation to Prof. Bharat Lohani, Prof. Nagarajan, and Revathi mam for their invaluable teaching, as well as to our Tutor Priyanka mam for guidance throughout this project.
- We are grateful for the knowledge, skills, and experiences gained during this project.

Introduction

- Water conservation is a crucial element in sustaining life on earth.
- □ The project integrates GIS and hydrological analysis to find suitable locations for micro water conservation structures.
- The idea is to demonstrate the benefits of GIS technology in water conservation planning and simplifying hydrological analysis.
- □ Use of the Analytical Hierarchy Process (AHP) to decide appropriate sites for construction of check dams.

Objective

- Objective: Identify sites for micro water conservation structures (check dams, gabions, percolation tanks).
- Approach: Use a watershed approach to consider topography, land use, and rainfall patterns.
- Purpose: Reduce erosive runoff velocity, store water, and prevent silt buildup.
- Benefits: Increase moisture regime, support vegetation growth, recharge groundwater, improve water availability, reduce soil erosion, and enhance ecological health of the area.

Study Area

- Chehalka A village area in Haryana.
- Approx. 5 km sq area

Data

The datasets used in this project study are as follows:

- Rainfall Data from 2001 to 2020 with a resolution of 0.25 X 0.25 degree to estimate the runoff.
- Point Cloud data to generate a DEM.
- LiDAR DEM: LiDAR DEM of 10m resolution to derive catchment boundaries and generate DEM derivatives such as slope map, stream order map.
- Aerial Photograph to create a high-quality Land Use and Land Cover Map.
- □ Land Use Land Cover Map to estimate the curve number.
- DSMW (Digital Soil Map of World) Soil Map.
- Geomorphology data at a resolution of 1:250000 scale.
- Lithology data at a resolution of 1:50000 scale.

Methodology

LiDAR DEM – 10 m resolution

LiDAR Digital Elevation Model (DEM) having 10 m resolution.

Soil Map

- Sandy or Loamy Surface Soil Layer as per DSMW Data
- Uniform Soil layer over entire area

Geomorphology Map

Landform and terrain features of study area:

- Moderately Dissected Hills and Valleys
- Alluvial Plain

Lithology Map

Type and distribution of rocks and sediments of study area:

- Feldspathic quartzite with tuff and schist
- Yellowish brown loose sand with or without kankar

LULC Map

LULC map for information about the land use and land cover characteristics of the study area.

Average Annual Rainfall Map

The annual average rainfall map of study area over a 20-year period, from 2001 to 2020.

Curve Number Map

Curve No. to represent how easily water can infiltrate (penetrate) the soil in the study area.

Runoff Map

Runoff calculated as

$$Runoff = \frac{(P - I_a)^2}{(P - I_a + S)}$$

where P = average annual rainfall, Ia = 0.2Sand S is potential retention which is calculated using curve number as

$$S = \frac{25400}{CN} - 254$$

Runoff Coefficient Map

Slope Map – 10 m resolution

Slope map derived from LiDAR DEM to depict the slope of the land surface

DEM Processing to make Stream Order

Stream Order – 10 m resolution

Different stream order within watershed of the study area.

AHP Analysis

Judgement Matrix								
	Slope	LULC	Runoff Coeff	Stream Order	Soil	Geomorphology	Lithology	
Slope	1	2	1/2	2	2	2	2	
LULC	1/2	1	1/3	1/3	2	2	2	
Runoff Coeff	2	3	1	3	3	3	3	
Stream Order	1/2	3	1/3	1	2	2	2	
Soil	1/2	1/2	1/3	1/2	1	2	2	
Geomorphology	1/2	1/2	1/3	1/2	1/2	1	1	
Lithology	1/2	1/2	1/3	1/2	1/2	1	1	

	Calculation of Weightage Matrix											
	Slope	LULC	Runoff Coeff	Stream Order	Soil	Geomorphology	Lithology	GM	A2	A3	A4	Final Weight
Slope	1	2	1/2	2	2	2	2	1.486	0.19	1.36	7.24	19
LULC	1/2	1	1/3	1/3	2	2	2	0.891	0.11	0.84	7.52	11
Runoff Coeff	2	3	1	3	3	3	3	2.420	0.30	2.20	7.23	30
Stream Order	1/2	3	1/3	1	2	2	2	1.219	0.15	1.17	7.62	15
Soil	1/2	1/2	1/3	1/2	1	2	2	0.774	0.10	0.72	7.34	10
Geomorphology	1/2	1/2	1/3	1/2	1/2	1	1	0.575	0.07	0.52	7.20	7
Lithology	1/2	1/2	1/3	1/2	1/2	1	1	0.575	0.07	0.52	7.20	7

AHP Analysis

Criteria	Class	Range	Rank	Weights	Rank*Weight
	0 to 1	Moderate	3		0.56
	1 to 3	Very High	5		0.94
Slope (degree)	3 to 8	High	4	0.187	0.75
	8 to 10	Low	2		0.37
	>10	Very Low	1		0.19
	Land with Scrub	Low	2		0.22
	Land without Scrub	Moderate	3		0.34
	Lake, Pond, Water, Tank, well	High	4		0.45
	Nala	Very High	5		0.56
Land Use Land Cover	Forest	Moderate	3	0.112	0.34
	Agriculture Land	Low	1		0.11
	Settlements	Low	1		0.11
	Group of Tress	Low	1		0.11
	Stony Waste	Moderate	3		0.34
	1 to 2	Moderate	3		0.46
	2 to 3 High 4				0.61
Stream Order	3 to 4	Very High	5	0.154	0.77
	4 to 6	4 to 6 Low 2			
	>6	Very Low	1		0.15
Soil Texture	Sandy Loam	Very High	5	0.098	0.49
Lithology	Yellowish Brown loose sand	High	4	0.072	0.29
Littlology	Phylite Quarzite	Very High	5	0.072	0.36
Geomorphology	Highly dissected hills and valleys	Very High	5	0.072	0.36
	Alluvial Plain	Moderate	3	0.072	0.22
	0.3 - 0.45	Low	1		0.30
	0.45 - 0.53	Very Low	2		0.61
Runoff Coefficient	0.53 - 0.63	Moderate	3	0.305	0.91
	0.63 - 0.85 High 4				1.22
	0.85 - 0.98 Very High 5		5		1.52

Check Dam Suitability Map

The final check dam suitability map depicting suitable area for siting check dam which is done using AHP approach and overlap option in ArcGIS Pro.

CE432A Project (Group 1)

Aman Kumar Singh	200100
Ritik Raj	200804
Nikhil Singh	200636
Tarun Yadav	201048
Utkarsh Srivastava	201070

