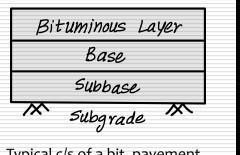
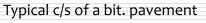


Distresses in Bituminous Pavements CE481A Project (Group 7)




Aman Kumar Singh (200100) Apoorva Jha (200177) Archana Meena (200180) Chandan Singh Naruka (200290) Chandramani Kumar (200292)

Dr. Prabin Kumar Ashish & Dr. Venkatesan Kanagaraj Department of Civil Engineering Indian Institute of Technology Kanpur

Bituminous Pavements

- Advantages
 - Better Riding Surface Quality
 - Flexibility
 - Cost-Effectiveness
- Disadvantages
 - High maintenance cost
 - Shorter Lifespan
 - Less stiffness

Distresses

Deterioration or damage caused to the pavement by

- Traffic Loads,
- Environmental Conditions &
- Material Properties
- □ In most cases, measured per unit area

Why are distresses important?

- Economic Implications:
 - Maintenance Costs ↑
 - Pavement Lifespan ↓
 - Vehicle Operating Costs ↑
- □ Safety Concerns:

- Accidents and Injuries
- Roadway Conditions
- Environmental Impacts:
 - Environmental Degradation
 - Increased Emissions
- Operational Efficiency:
 - Traffic Congestion
 - Transportation Delays

Regular maintenance vital for safety & longevity

Distresses in Campus

Common Distresses: Fatigue, Rutting, Potholes, Raveling

- More distressed bituminous pavements (Poor Condition)
- Less distressed bituminous pavements (Good Condition)

Types of Distresses

- Structural
 - Rutting
 - Fatigue
 - Potholes
 - Thermal cracking
 - Longitudinal cracking
 - Transverse cracking
 - Reflection cracking
 - Corrugation
 - Depression

Functional
Polished Aggregates
Raveling
Bleeding

Types of Distresses

Structural Distresses

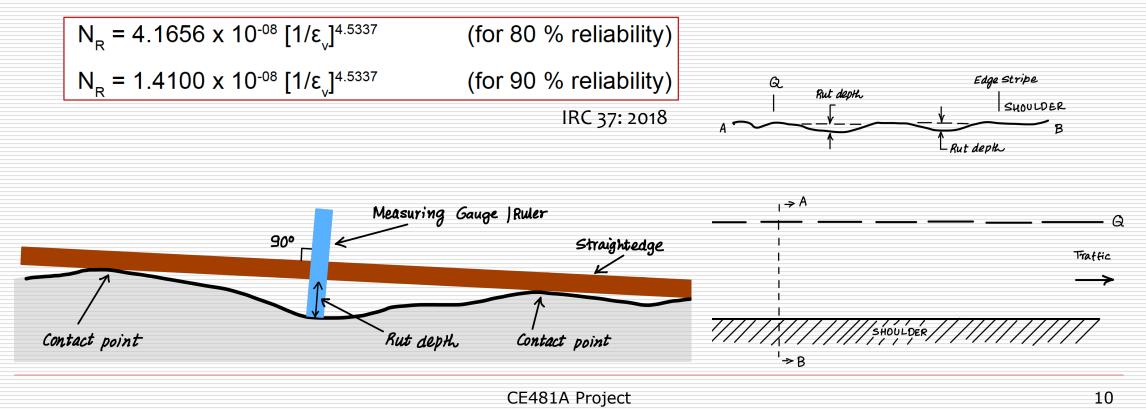
- Impact structural integrity and loadbearing capacity
- Characteristics:
 - Often lead to cracks, rutting, and other damage
 - Can compromise the safety and durability of the road

Functional Distresses

- Impact the functionality and ride quality of the pavement
- Characteristics:
 - May not compromise load-bearing capacity

Rutting

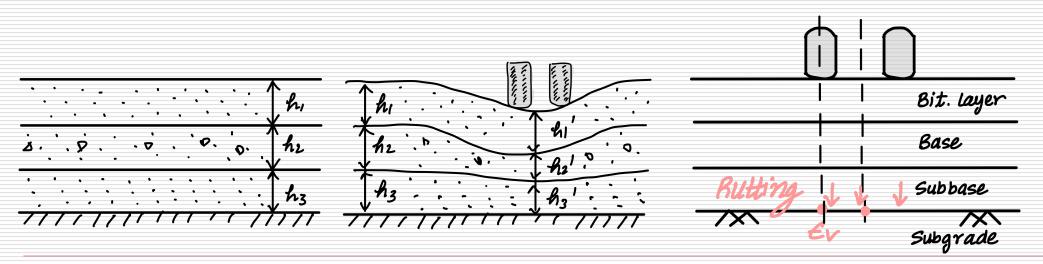
- Permanent deformation along the maximum travelled wheel path
- Depends on
 - traffic repetitions,
 - construction materials,
 - densification,
 - and pavement temperature
- Occurs in areas with heavy traffic or frequent heavy vehicles


Rutting in Campus

Rutting observed along the road extending from e-shop to Hall 6, specifically in the vicinity of the Faculty Apartments

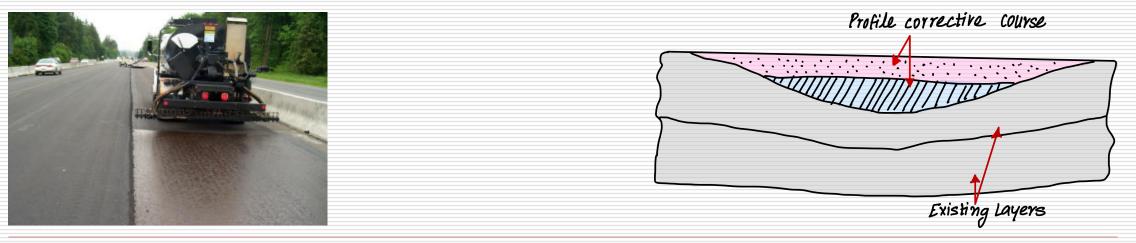
Rutting: How to measure?

- Criterion: Critical rutting condition = Rut depth \geq 20 mm along wheel paths
- Prediction: Estimate ESAL repetitions before reaching this condition



Rutting: Causes

- Heavy channelized traffic and overloading of vehicles
- Inadequate compaction of the mix at the surface or in the underlying bituminous courses
- □ Improper mix design
- Weak pavement due to poor subgrade


Rutting: Mechanism

- Manifestation of two different phenomena:
 - densification
 - deformation of various layers

Rutting: Countermeasures

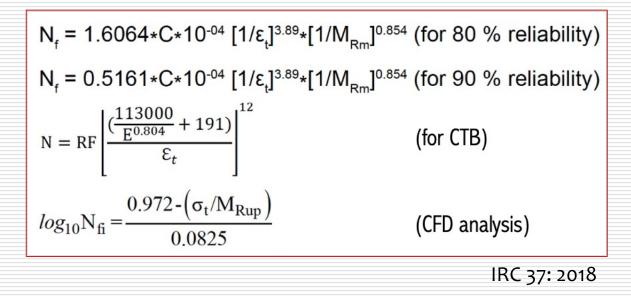
- Apply tack coat
- Compact to desired levels
- Apply a profile corrective course
- □ Fill ruts with premix patching materials (asphalt binder)

Fatigue

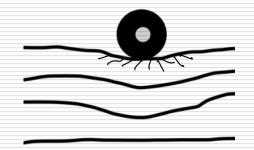
- □ 'Fatigue' of the bituminous materials
- Network of interconnected cracks
- Also known as Alligator Cracking
- Decreases pavement life
- Accelerates further deterioration

Fatigue in Campus

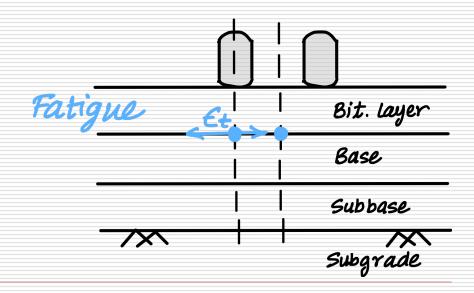
- Road from Kargil Heights to Hall 6
- Road from Hall 2 to Academic Gate 3
- Road from Hall 6 to E-Shop
- Near DoAA Canteen



Fatigue: How to measure?


Criterion: Critical fatigue condition = Fatigue area \geq 20 % out of paved surface

Prediction: Estimate ESAL repetitions before reaching this condition


Fatigue: Causes

- Overloading by heavy commercial vehicles
- Inadequate pavement thickness / structural design
- Faster propagation due to freeze-thaw cycles, saturation and temperature fluctuations
- Stripping of surface course resulting in reduced thickness
- Cumulative fatigue damage

Fatigue: Mechanism

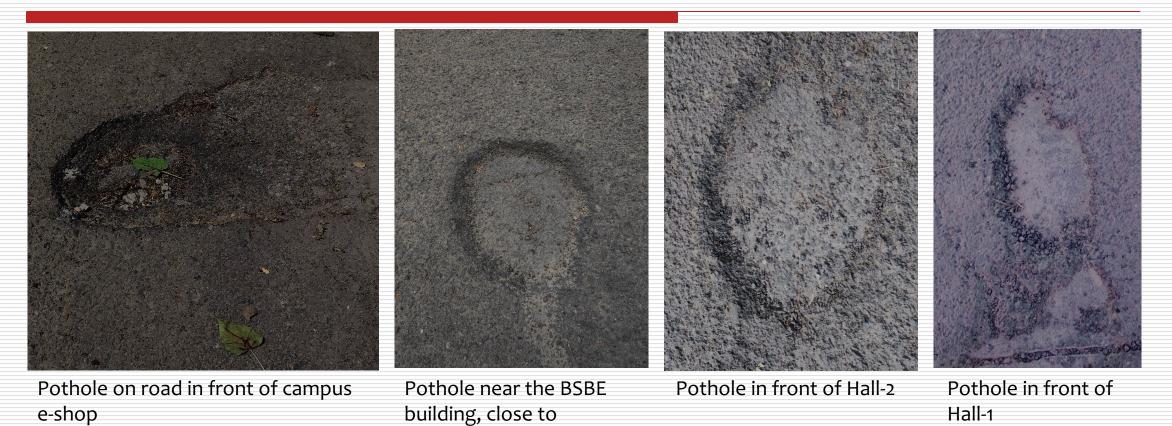
- □ Tensile stresses induced on bottom of bit. layer due to repetitive loading
- Initiation of microcracks
- Growth of micro cracks
- Propagate to the surface

Fatigue: Countermeasures

- Crack sealing by bitumen emulsions
- Crack sealing by rubberized and modified bitumen
- Milling and surface recycling
- Use of good quality binder materials

Potholes

Bowl-shaped holes on bituminous pavement


Minimum Diameter:

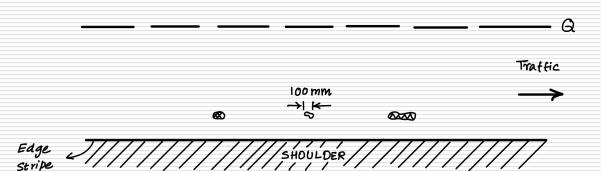
(FHA Distress Identification Manual)

- Circular potholes: ≥ 150 mm
- Irregular potholes: Should fit a 150-mm circle
- Makes pavement accident prone

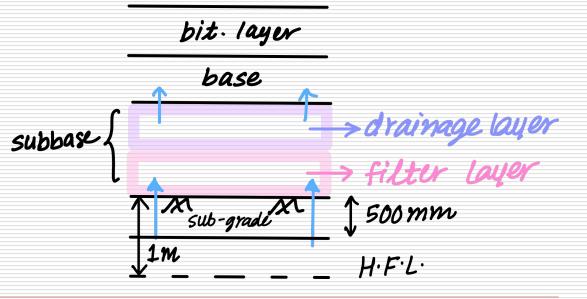
Potholes in Campus

CE481A Project

academic gate 3

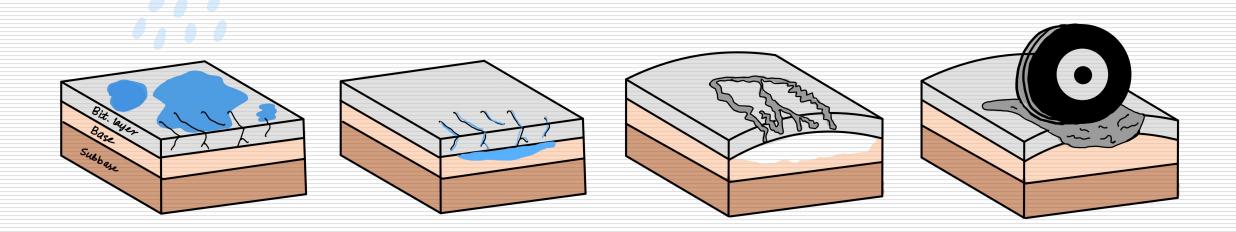

Potholes: How to measure?

- Pothole depth is the maximum depth below pavement surface
- □ Severity Levels:
 - Low: < 25 mm deep
 - Moderate: 25 to 50 mm deep
 - High: > 50 mm deep



Potholes: Causes

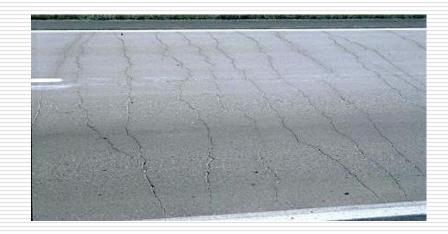
Weakening of bitumen-aggregate bonds


- Inadequate construction quality control
- Ingress of water and subsequent damage
- Error in calculation of HFL / No calculation

Potholes: Mechanism

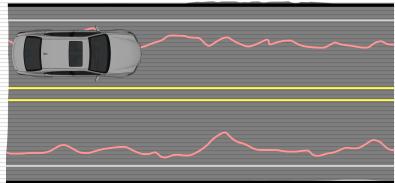
□ Water infiltration, through cracks weakens pavement layers

□ Freeze-thaw cycles in colder climates cause water to expand leading to cracks


Potholes: Countermeasures

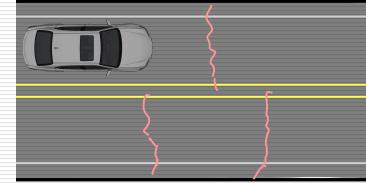
- Repairment by patchwork
- Use of high-quality asphalt materials
- Adequate drainage systems design

Thermal Cracking


- □ Gradual wearing of top surface
- Causes:
 - Temperature fluctuations
 - Different α of pavement materials
- Effects:
 - Reduced pavement life
 - Moisture infiltration, leading to further damage
- Countermeasures:
 - Proper Mix Design
 - Regular Maintenance

Longitudinal Cracking

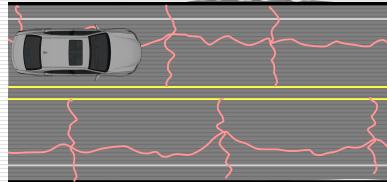
- Cracks parallel to the centerline or along the road
- Causes:
 - Alternate wetting and drying beneath the shoulder surface
- Effects:
 - Potential Alligator Cracking Source
 - Moisture infiltration, leading to further damage
 - Reduced ride quality
- Countermeasures:
 - Crack sealing using GGRB (Low/Medium severity)
 - Fresh overlay (High severity)



Transverse Cracking

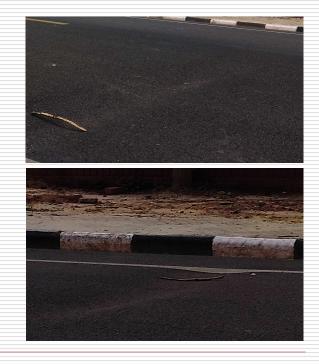
- Interconnected cracks forming series of large blocks perpendicular to the road's direction
- Causes:

- Structural failure of CTB
- Shrinkage of bituminous mix
- Effects:
 - Moisture infiltration, leading to further damage
 - Reduced pavement integrity
- Countermeasures:
 - Treatment using slurry seal or rubberized bitumen



Reflection Cracking

- Propagation of cracks formed in CTB layer to the bit. layer
- Causes:
 - Construction vehicle
 - Thermal and moisture changes in CTB
- Effects:
 - Early-stage damage of pavement
 - Moisture infiltration, leading to further damage
- Countermeasures:
 - Aggregate inter layer (100mm)
 - SAMI (thin and polymeric)


Corrugation

- Undulations due to plastic deformation of top bituminous surface
- Causes:
 - Lack of stability of asphalt mixtures in warm weather
 - Increased horizontal force during vehicle start or stop
- Effects:
 - Discomfort during driving
- Countermeasures:
 - Apply a new surfacing layer
 - Thoroughly roll the treated area for compaction
- In Campus:
 - Road in front of Hall 2

Depression

- Localized area where the pavement sinks relative to the finished surface
- Causes:
 - Differential settlement of subgrade
 - Inappropriate mix design
- Effects:
 - Water accumulation and further damage
 - Affects riding quality
- Countermeasures:
 - Filling with premix aggregates followed by compaction
- In Campus:
 - Road from Kargil heights to H6 near KV School

Polished Aggregates

- Smoothening of pavement surface
- Causes:
 - Repetitive passage of traffic
 - Less abrasive strength of aggregates
- Effects:
 - Lower Skid Resistance
- Countermeasures:
 - Replacement of top course with angular aggregate
 - Applying a skid-resistant slurry seal or overlay
- In Campus:
 - Road from Kargil heights to Hall 6

Raveling

- □ Gradual wearing of top surface
- Causes:
 - Weathering of bitumen
 - Aging of pavement
- Effects:
 - Faster Deterioration
 - Contributes to Pothole formation
- Countermeasures:
 - Coat of slurry seal
- □ In Campus:
 - Road in front of MT, Technopark, Hall 2

Bleeding

- Upward movement of excess asphalt/bituminous binder
- Causes:
 - Heavy tack coats
 - High Temperature
- Effects:
 - Decreased ride quality
 - Lead to low skid resistance
- Countermeasures:
 - Proper Mix Design
 - Sand blotting

References

- Code of Practice for Maintenance of Bituminous Surfaces of Highways, IRC:82-1982, The Indian Roads Congress, New Delhi, 1982.
- AASHTO Guide for Design of Pavement Structures, American Association of State Highway Officials, Washington, D.C., 1993.
- Distress Identification Manual for The Long-Term Pavement Performance Program, Federal Highway Administration Research and Technology, 2014.
- A. Das and P. Chakroborty, Principles of Transportation Engineering, Prentice Hall India Pvt., Limited, 2017.
- Guidelines for the Design of Flexible Pavements, IRC:37-2018, The Indian Roads Congress, New Delhi, 2018.

Thank You!

and a star

CE481A Project - Group 7