

CE331 Lab 3 : EDMI Calibration

Aman Kumar Singh

Teaching Assistant Department of Civil Engineering Indian Institute of Technology Kanpur

EDMI (Electronic Distance Measuring Instrument)

- Combines theodolite angle measurements with electronic distance measurement.
- Replaces taping, ensuring quick and accurate distance measurements regardless of terrain.
- Measures both horizontal and zenith (altitude) angle as well as sloping distance.
- Automatically calculates horizontal and vertical components from the slope distance.
- Distance measurement takes 1.5 to 3 seconds, repeated measurements improve accuracy.
- Commonly referred to as Electronic Total Station (ETS) or Total Station.
- Useful for
 - traversing
 - control networks
 - setting-out
 - photogrammetric control
 - deformation monitoring

CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 3

Objective

Lab Exercise 3 : Calibration of EDMI

For given EDMI determine the following errors:

- Cyclic error curve
- Reflector-instrument error
- Scale error

Equipment

- EDMI
- Tape
- Reflector
- Tripod
- Bipod

CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 2

Principal of Distance Measurement

Phase Comparison Method

• Measures the distance by comparing the phase shift of the reflected signal with the emitted signal.

Time of Flight Method

• Measures the distance based on the time taken for the signal to travel to the target and back.

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 5

Setting up the instrument

Tripod Adjustment

- Centering the Tripod:
 - Use a plumb bob to center the tripod over the survey point
 - · Adjust legs radially and circumferentially
- Leveling the Tripod:

CE331 Principles of Geoinformatics

- Adjust tripod legs to ensure the head is horizontal
- Use built-in leveling bubble or device

Total Station Adjustment

- Centering:
 - Align optical axis over survey point using plumb bob or optical plummet
 - Rotate tripod legs for optimal centering
- Leveling:
 - Adjust foot screws to level instrument
 - Use trial and error method (no automatic solution yet!)

Prism Reflector

- Consist of a cube of glass cut across its corner to form three internal 90° faces.
- The signal enters, reflects off three internal faces, and returns along the same path it entered.
- Returns a signal to the EDM even if not perfectly aligned.
- Path length inside the prism remains constant, ensuring a coherent signal is returned.
- Looking through a prism shows your eye centered, regardless of rotation, demonstrating the reflective property.
- Height of a prism reflector in lab can be adjusted from 1.5 to 2.66 meters.

CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 8

Calibration of EDMI

- Adjusts measurements to match true values by applying correction factors.
- Involves determining systematic errors and applying necessary corrections.
- Ensures instrument accuracy despite age or wear.

Calibration Errors in EDMI

Zero Error:

• Independent of distance, a constant offset in measurements.

Cyclic Error:

• Varies with distance, typically caused by internal instrument imperfections.

Scale Error:

• Proportional to distance, affects accuracy over long range distances.

Zero Error (Reflector-Instrument Constant)

- Caused by changes in instrument/reflector constants due to aging or repairs.
- Independent of distance.

Zero Error Calculation:

- Divide a suitable distance *D* into *n* segments.
- Use the same EDMI and reflector for all measurements.
- Measure the total length D and each segment $(d_1, d_2, d_3, ...)$.
- Calculate the reflector constant using:

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 9 CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 10

CE331 Principles of Geoinformatics

Scale Error

- Proportional to distance, influenced by oscillator temperature and diode errors.
- · Periodic deviation due to internal factors.

Scale Error Calculation:

- Use a calibrated line of known length D_k .
- Measure the length using total station as D_m .
- Formula:

Scale error (in ppm) = $\left(\frac{D_k - D_m}{D_k}\right) \times 10^6 = n$ ppm

Corrected distance = $D_m + n \times D_m$

Note: Measure D_m as the difference between two measurements to eliminate zero error, since it is distance-independent.

```
D_m = IB - IA
```

```
A \quad {}_{known\,distance} \quad B
```

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 13

CE331 Principles of Geoinformatics

CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 14

Accuracy of EDMI

• Manufacturer after doing calibration report the quality of EDMI measurements as:

Accuracy = $\pm(a mm + b ppm)$

- a: Distance independent error
- b: Distance dependent error
- Standard deviation of observations:

• In GI Lab, Trimble S5 Robotic Total Station is used.

EDM Accura	cy	Angular Accuracy	Minimum Range	Maximum Range	Features
1.0 mm + 2 ppm (F 2.0 mm + 2 ppm	Prism) / (DR)	1', 2', 3' or 5'	3 m	5500 m	Autolock, Magdrive, SurePoint
Source: Trimble S5 Spec sheet https://trl.trimble.com/docushare/dsweb/Get/Document-751932/022516-153G TrimbleS5 DS USL 0121 LRsec.pdf					

