

## **Key Terms in Vertical Control**

- Leveling is the process of finding elevations of points or their differences in elevation.
- Level line or surface is normal to gravity at all points, often ellipsoidal.
- Horizontal line or surface is normal to gravity at a particular point.
- Datum is a reference surface to measure elevations, usually mean sea level (MSL).
- Benchmark (BM) is a permanent point with a known height above the datum.
- Reduced level (RL) of a point is its height above or below a datum.



# Important Surfaces in Geodesy

- Earth's Surface (Topography)
  - The actual terrain of the Earth with varying elevations.
- Geoid Surface (Datum)
  - An equipotential surface of Earth's gravity field.
  - Approximates Mean Sea Level (MSL) where H = 0.
- Reference Ellipsoid
  - A mathematically defined, smooth surface.
  - Used as a reference for geographic coordinates and ellipsoidal heights.



Earth's Surface

Earth's Surface

Filipsoid

Geoid





## Procedure

#### Setup

- Step 1: Setup the tripod on stable ground.
- Step 2: Mount the Automatic Level on the tripod.
- Step 3: Use the foot screws and circular bubble to level the instrument.

#### Readings

- Step 1: Take the first reading (Backsight) from a known RL near the GI lab (BM).
- Step 2: Conduct fly leveling to determine RLs of features e.g., electric poles, markings.
- Step 3: Take the final reading (Foresight) at the starting point near the GI lab (BM).

## Recording Observations in Levelling Field Book

- Method 1: Rise and Fall Method
- Method 2: Height of Instrument / Height of Collimation Method



Courtese Wolf and Chilan

CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 9



#### **Height of Instrument Method Misclosure Error Arithmetic Check:** How to check the levelling accuracy? Calculate the height of the 0.2 $\Sigma BS - \Sigma FS = Last RL - First RL$ instrument by adding the • Close the loop backsight to the RL, then Return to the original BM or connect to another known BM to detect any misclosure. subtract foresight to find 15 m 0.5 m B۵ $Misclosure = H_{BM} - BM = Computed RL of BM - Known RL of BM$ 498 ... FS the new RL. **Acceptable Error** IS 1.7 m 1.0 m BS Level Loop ВM • Determined by project requirements or predefined standards. B 49.5 . 2.0 **Closure Tolerances** 48.3 m 0.5 Distance Based • Set-up Based Вм C 50 48.0 m *Tolerance* $(mm) = c\sqrt{k}$ Tolerance $(mm) = c\sqrt{n}$ Station BS IS FS н RL Remarks 50.5 m ΒM 1.0 51.0 50.0 Benchmark (Known RL) • k = Distance levelled (in km)n = No. of instrument set-ups Level Lon Α 0.5 50.5 В 0.5 1.5 50.0 49.5 **Turning Point** • c = Constant (2 to 12 mm, based on)• $c = \text{Constant} (\pm 5 \text{ mm})$ a 2.0 48.0 С BM1 desired accuracy) • Typically used for construction survey D 0.2 49.8 $\Sigma BS - \Sigma FS = -1.7$ 1.7 Е 48.3 Last Point BM2 Last RL - First RL = -1.7Sum 3.2 CE331 Principles of Geoinformatics Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 11 CE331 Principles of Geoinformatics Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 12

## **Quality of Work**

| Misclosure Error           | $\leq$ | <b>Closure Tolerance</b>     |
|----------------------------|--------|------------------------------|
| $Misclosure = H_{BM} - BM$ | $\leq$ | Tolerance $(mm) = c\sqrt{k}$ |

| Quality of Work                                | Purpose                                          | С                              |
|------------------------------------------------|--------------------------------------------------|--------------------------------|
| Highest                                        | Geodetic leveling, special surveys               | 1                              |
| Precise                                        | Geodetic leveling, widely distributed benchmarks | 4 (5)                          |
| Accurate                                       | Principal benchmarks, extensive surveys          | 12 (10)                        |
| Ordinary                                       | Construction, location surveys                   | 24 (25)                        |
| Rough                                          | Reconnaissance, preliminary surveys              | 100                            |
| Courtesy: Dr. Onkar Dikshit, Geoinformatics La | b, ITT Kanpur                                    | ł                              |
| CE331 Principles of Geoinformatics             | Aman Kumar Singh   Civil Engine                  | ering   IIT Kanpur   2024   13 |

## **Error Distribution (Adjustment)**

How the closing error can be distributed/adjusted?

#### Approach 1:

- · Based on Number of Points
  - Apply error correction to each point based on the number of points (*n*)

 $C_i = \frac{-M}{n}$ 

Adjusted elevation at CP



 Adjusted elevation at BM  $\overline{H}_{BM} = H_{BM} - M = BM$ 

• Apply the same correction at intermediate points as at CPs. Approach 2:

- Based on Distance
  - Distribute error correction based on distance leveled  $(d_i)$ .

$$C_i = -\frac{d_i M}{\sum d_i}$$

- Adjusted elevation at CP  $\overline{H}_i = H_i + C_i$
- Adjusted elevation at BM  $\overline{H}_{BM} = H_{BM} + C_i = BM$

Note: The purpose of adjustment is to ensure that the geometric constraints are satisfied. It doesn't increase accuracy of observations.

CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 14

| BS   | IS  | FS  | Rise | Fall | RL   | Distance | Remarks    |            |  |
|------|-----|-----|------|------|------|----------|------------|------------|--|
| 1.5  |     |     |      |      | 60.5 | 0        | TBM (60.5) | 1 <i>A</i> |  |
|      | 2.5 |     |      | 1.0  | 59.5 | 30       |            | 2A         |  |
|      | 4.0 |     |      | 1.5  | 58.0 | 50       |            | 3A         |  |
| 3.0  |     | 2.0 | 2.0  |      | 60.0 | 70       | СР         | 4A (1B)    |  |
|      | 5.5 |     |      | 2.5  | 57.5 | 95       |            | 2B         |  |
| 6.0  |     | 1.0 | 4.5  |      | 62.0 | 120      | СР         | 3B (1C)    |  |
|      |     | 3.0 | 3.0  |      | 65.0 | 160      | TBM (65.1) | 2C         |  |
| 10.5 |     | 6.0 | 9.5  | 5.0  | 65.0 |          | Checks     |            |  |
| 6.0  |     |     | 5.0  |      | 60.5 |          | Misclosure | 0.1        |  |
| 4.5  |     |     | 4.5  |      | 4.5  |          | Correct    |            |  |

# Example Level Book : Height of Phase of Collimation (HPC)

| BS                  | IS              | FS       | HPC  | RL   | Remarks    |         |
|---------------------|-----------------|----------|------|------|------------|---------|
| 1.5                 |                 |          | 62.0 | 60.5 | TBM (60.5) | 1A      |
|                     | 2.5             |          |      | 59.5 |            | 2A      |
|                     | 4.0             |          |      | 58.0 |            | 3A      |
| 3.0                 |                 | 2.0      | 63.0 | 60.0 | Change pt  | 4A (1B) |
|                     | 5.5             |          |      | 57.5 |            | 2B      |
| 6.0                 |                 | 1.0      | 68.0 | 62.0 | Change pt  | 3B(1C)  |
|                     |                 | 3.0      |      | 65.0 | TBM (65.1) | 2C      |
| 10.5                | 12.0            | 6.0      |      | 65.0 | Checks     |         |
| 6.0                 |                 |          |      | 60.5 | Misclosure | 0.1     |
| 4.5                 |                 |          |      | 4.5  | Correct    |         |
| Courtesy: Schofield | and Breach.     |          | 1    |      |            |         |
| CE331 Princi        | ples of Geoinfo | ormatics |      |      |            | Aman Ku |



| Back Sight (BS) |       |       | Fore Sight (FS) |       |       |         | ы       | Demontos | Distance |      |       | Cumulative | Corrected |
|-----------------|-------|-------|-----------------|-------|-------|---------|---------|----------|----------|------|-------|------------|-----------|
| LS              | MS    | US    | LS              | MS    | US    | н       | RL      | Remarks  | D1       | D2   | Total | Distance   | RL        |
| 0.402           | 0.480 | 0.557 |                 |       |       | 100.480 | 100     | BM       |          |      |       |            |           |
| 0.424           | 0.508 | 0.591 | 3.258           | 3.367 | 3.478 | 97.621  | 97.113  |          | 15.5     | 22.0 | 37.5  | 37.5       | 97.113    |
| 2.387           | 2.458 | 2.528 | 1.800           | 1.879 | 1.958 | 98.200  | 95.742  |          | 16.7     | 15.8 | 32.5  | 70.0       | 95.741    |
| 1.673           | 1.723 | 1.774 | 1.673           | 1.723 | 1.774 | 98.200  | 96.477  | CP1      | 14.1     | 10.1 | 24.2  | 94.2       | 96.476    |
| 1.939           | 2.094 | 2.249 | 2.387           | 2.457 | 2.527 | 97.837  | 95.743  |          | 10.1     | 14.0 | 24.1  | 118.3      | 95.742    |
| 1.562           | 1.682 | 1.802 | 1.790           | 1.960 | 2.130 | 97.559  | 95.877  | CP2      | 31.0     | 34.0 | 65.0  | 183.3      | 95.875    |
| 0.445           | 0.510 | 0.578 | 0.329           | 0.475 | 0.621 | 97.594  | 97.084  | CP3      | 24.0     | 29.2 | 53.2  | 236.5      | 97.082    |
| 1.667           | 1.800 | 1.932 | 2.522           | 2.610 | 2.699 | 96.784  | 94.984  |          | 13.3     | 17.7 | 31.0  | 267.5      | 94.981    |
| 2.899           | 3.044 | 3.191 | 0.050           | 0.229 | 0.409 | 99.599  | 96.555  | CP4      | 26.5     | 35.9 | 62.4  | 329.9      | 96.552    |
| 3.326           | 3.410 | 3.492 | 1.612           | 1.741 | 1.871 | 101.268 | 97.858  |          | 29.2     | 25.9 | 55.1  | 385.0      | 97.854    |
| 1.549           | 1.742 | 1.929 | 0.560           | 0.699 | 0.838 | 102.311 | 100.569 | CP5      | 16.6     | 27.8 | 44.4  | 429.4      | 100.565   |
| 0.922           | 1.110 | 1.292 | 0.519           | 0.700 | 0.822 | 102.721 | 101.611 | CP6      | 38.0     | 30.3 | 68.3  | 497.7      | 101.606   |
| 0.812           | 0.968 | 1.122 | 1.868           | 2.061 | 2.259 | 101.628 | 100.66  |          | 37.0     | 39.1 | 76.1  | 573.8      | 100.655   |
| 0.535           | 0.758 | 0.980 | 1.039           | 1.300 | 1.562 | 101.086 | 100.328 | CP7      | 31.0     | 52.3 | 83.3  | 657.1      | 100.322   |
| 1.142           | 1.281 | 1.420 | 1.972           | 2.189 | 2.405 | 100.178 | 98.897  |          | 44.5     | 43.3 | 87.8  | 744.9      | 98.890    |
| 2.086           | 2.215 | 2.345 | 1.101           | 1.201 | 1.302 | 101.192 | 98.977  | CP8      | 27.8     | 20.1 | 47.9  | 792.8      | 98.969    |
|                 |       |       | 1.069           | 1.184 | 1.299 | 100.008 | 100.008 | BM       | 25.9     | 23.0 | 48.9  | 841.7      | 100       |

## **Sources of Error**

#### **Instrumental Errors**

- Line of sight not horizontal (collimation error): Minimized by equalizing sight distances
- Parallax & Staff Graduation Errors: Calibration is key.
- Tripod Stability: Ensure firm and secure setup.

**Observational Errors** 

- Staff not vertical: Hold vertically; use a staff bubble.
- Reading Errors: Limit sight distances to 25-30 m for clarity.
- Booking Errors: Record data carefully and verify observation.

#### **Natural Errors**

- Curvature and Refraction: Minimize by equal sight distances and avoiding large distances.
- Environmental Factors: Wind and heat shimmer can impact accuracy.

Courtesy: Schofield and Breach. CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 19

