

Traversing: Why?

Traversing: What and How?

Traverse

• Control established using measured distances and angles

В

θ2

d4

VA

SD

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 4

HD

C

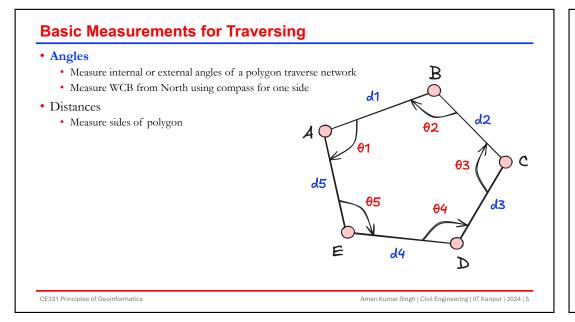
Horizontal

AQ

ds

VD

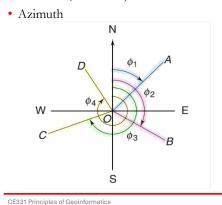
E


Vertical

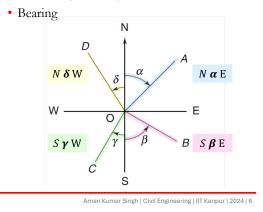
- Framework of connected lines
- Traverse Measurements
 - Angles
 - Distance
- Theodolite: Measures horizontal and vertical angles
- EDMI: Measures distances

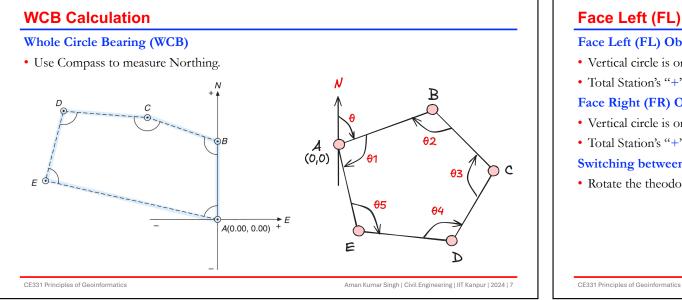
Types of Traversing

- Open Traverse : can't apply checks
- Closed Traverse : can apply checks


CE331 Principles of Geoinformatics

Bearing Systems


Whole Circle Bearing (WCB)


• Measurement from North in a clockwise direction (0° to 360°)

Reduced/Quadrantal Bearing (RB/QB)

• Measurement from North or South, in either direction (0° to 90°).

Face Left (FL) and Face Right (FR) Observations

Face Left (FL) Observation

- Vertical circle is on the left side of the observer.
- Total Station's "+" sign faces right during observation.

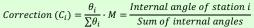
Face Right (FR) Observation

- Vertical circle is on the right side of the observer.
- Total Station's "+" sign faces left during observation.

Switching between FL and FR

• Rotate the theodolite telescope 180° in azimuth.

Angle Misclosure and Adjustment


Angle Misclosure

- Sum of interior angles of a closed polygon should ideally be $\sum = (n-2)180^{\circ}$
- It will deviate from the theoretical sum due to random error.

Angle Misclosure = $\sum \theta_i - (n-2)180^\circ$

Bowditch's Rule for Angle Adjustment

• Correction to internal angle *i*

Corrected Angle = Measured Angle - Correction

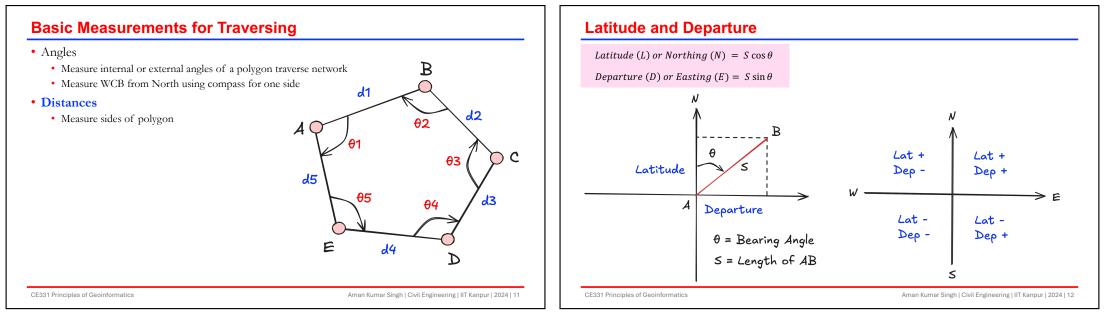
We can also measure external angles instead of internal, with their sum ideally being $\sum = (n+2)180^{\circ}$

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 10

d4

В

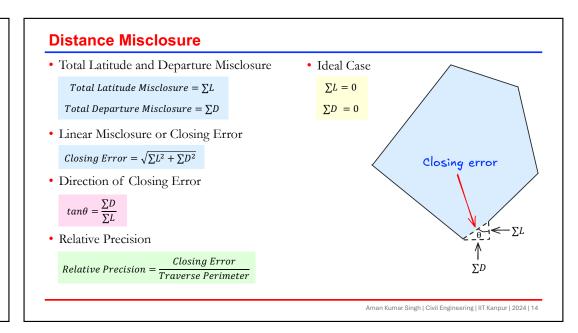
θ2

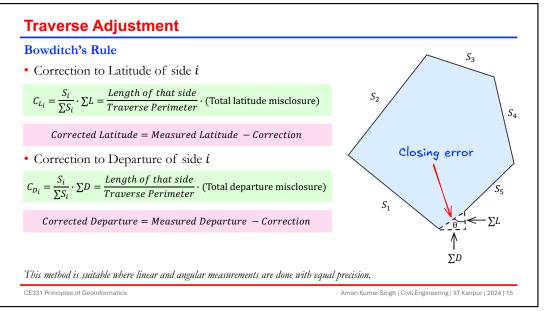

θ3

 $A \bigcirc$

d5

E


• Misclosure



Gales Traverse Table

• All traverse computations are tabulated in Gale's Traverse Table.

Line	WCB	RB	Length (m)	Latitude			Departure		
				Calculated	Correction	Corrected	Calculated	Correction	Corrected
AB	296° 00' 00"	N 64° 00' 00" W	40	17.53	-1.73	19.26	-35.95	0.23	19.26
BC	321° 45' 32"	N 38° 14' 28" W	32	25.13	-1.39	26.52	-19.81	0.18	26.52
CD	66° 32' 19"	N 66° 32' 19" E	35.05	13.95	-1.52	15.47	32.15	0.20	15.47
DE	120° 43' 42"	S 59° 16' 18" E	30.8	-15.74	-1.34	-14.40	26.48	0.18	-14.40
EA	182° 05' 31"	S 2° 05' 31" W	49	-48.97	-2.12	-46.85	-1.79	0.28	-46.85
Σ 186.85			-8.1	-8.1	0	1.08	1.08	0	

Quality of Traverse

Quality of Traverse for Angles

• Tolerance for Angle Misclosure

Tolerance ('') = $c\sqrt{n}$

Quality of Work	Permissible limit of closing error			
First Order	$6\sqrt{n}$ "			
Second Order	15 \sqrt{n} "			
Third Order	30√ <i>n</i> "			
	n = no. of stations			

Quality of Traverse for Distances

• Tolerance for Relative Precision

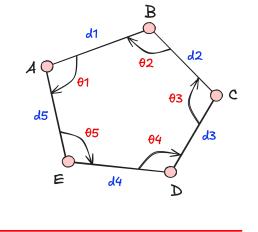
Tolerance (e/p) = 1:X

Quality of Work	Permissible limit of relative precision
First Order	1:25000
Second Order	1:10000
Third Order	1:5000

CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 16

Procedure


- Initial Settings:
 - Perform initial settings as per the instrument manual for the digital theodolite with a plumb bob.
- Station Setup:
 - Select 5 stations forming a braced quadrilateral with sides 40-50m long.
 - Each group sets up the instrument at one station only.
- Measure Distances:
 - Determine the length of each side using tape and tacheometry before instrument setup.
- Equipment Adjustment:
 - Carry out temporary adjustments: centering and leveling.
- Record Angles:
 - At each station, record all angles (horizontal and vertical).
 - Each group records both face right and face left observations.
 - Close the horizon and apply station adjustments.
 - Each group should use different "ZERO" or initial readings.

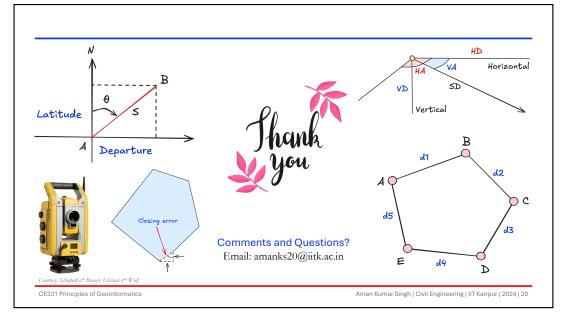
CE331 Principles of Geoinformatics

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 17

Procedure

- Move to Next Station:
 - After recording, move to the next station.
 - Do not move the instrument.
 - Use the instrument setup by the previous group; repeat angle measurements.
- Error Adjustment:
 - Adjust closing errors using Bowditch's rule. Refer to Gales Traverse Table.

CE331 Principles of Geoinformatics


Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 18

Deliverables

- Detailed Report with figures and equations
- Observation Table for angles and distances
- Traverse Adjustments for angles and distances
- Closing Error calculations for angles and distances
- Quality of Traverse for angles and distances

Aman Kumar Singh | Civil Engineering | IIT Kanpur | 2024 | 19

CE331 Principles of Geoinformatics