	C00	JRDIN	I AT	F	TF	1A5	1S	FO	RN	A I	10	N		
Given	local	L coor	dina	at <i>es</i>	01	f `r	л' с	ont	rol	poi	nts	a	nd	
		linates												d
-		inates												
								0						
AFFIN	e Tra	NSFORM	ATIC	ON E	QU	Ατια	N							
$N_{G} =$	S·sir	n(g)·NL	+	S	cos	(}) ·	El	+	T _N					
$E_{G} =$	S·w	(p)·NL	_	S·s	sin(₽)· €	EL	+	ΤĘ					
Represe	entino	g above	eau	<i>iat</i>	ion	in 1	na	rix	for	m	as	Α :	x =	L
NL	EL		0		s	cos	ο	=		N	G			
	NL	0	t			sinf				E				
			-	/	1	N			T	_		/		
- Transf	brma-	tion ma	trix		٦	Ē			<u> </u>	bse	erva	tior	5(1	-)
	(A)		2	unt	non	uns	(x)				pi	(:P2
NG,EG	-	GLOBA	ι co	OR		TES	5							
NL, EL		LOCAL	. со	ORT	INA	TES				CI	6			
TN, TE		TRAN	SLAT	ION	IN	NOR	сн)	eas	r		_	PS		CP4
ß	-	ROTAT	ION	AN	QLE		•				Ľ	د יי		
2	-	SCAL	E Fr	ACTO	or	(As	SUN	ED	SAM	e †	or	NOF	2TH/	EAST
No. of	unkn	iowns	(x)	=	4									
		ations				Po	int	=	2					
		e need								g	et H	he	sou	ition
		n is g						_						

PROCED	
Assumi	ng we know global coordinates of CPI and CP2.
	Local Coordinates Global Coordinates
CPI	(N_{l_1}, E_{l_1}) (N_{g_1}, E_{g_1}) $(Known$
CP2	(N_{L2}, E_{12}) (N_{g2}, E_{g2})
•	Known
•	• <u> </u>
CPN	(N_{ln}, E_{ln}) (N_{gn}, E_{gn})
Step 1	Put local and global coordinates of CPI and C
	in AX=L to find the solution.
	$A = A_1 $
	Solve them to find x = ?
	$L = \begin{bmatrix} L \\ I \end{bmatrix} \qquad \qquad X = (A^{T}A)^{T}L$
tor reau	ndant solution (>2 points), least squares is use
STEP 2	Use computed X to find global coordinates o
SIEF 4	all the remaining CPs.
	$L_3 = A_3 \times \gamma$
	Ly = Ay × global coordinates of
	remaining control points.
	$L_n = A_n \chi$

CE331 Principles of Geoinformatics | Aman Kumar Singh | IIT Kanpur | 2024