

$G_{D} = O$ $G_{C} = T_{A} Z_{4}$ $G_{B} = T_{A} Z_{4} + T_{Z_{3}}$ $G_{A} = T_{A} Z_{4} + T_{Z_{3}} + T_{SAt} Z_{2}$ $G_{X} = T_{A} Z_{4} + T_{Z_{3}} + T_{SAt} Z_{2} + Y_{SAt} Z_{2}$ $G_{X} = T_{A} Z_{4} + T_{Z_{3}} + T_{SAt} Z_{2} + Y_{SAt} Z_{2}$ $fore Water$ $M_{D} = O$ $M_{D} = O$ $M_{D} = -S h T_{D}$ $G_{C} just above = O$ Ioo $G_{C} just above = O$ $S = Degree of (aturation)$ $h = height of the location under consideration$
$6_{c} = T_{a} Z_{4}$ $6_{g} = T_{a} Z_{4} + T_{Z_{3}}$ $6_{A} = T_{a} Z_{4} + T_{Z_{3}} + T_{sat} Z_{2}$ $6_{x} = T_{a} Z_{4} + T_{Z_{3}} + T_{sat} Z_{2} + Y_{sat} Z_{2}$ $6_{x} = T_{a} Z_{4} + T_{Z_{3}} + T_{sat} Z_{2} + Y_{sat} Z_{2}$ $H_{b} = 0$ $M_{b} = 0$ $M_{b} = 0$ $M_{b} = -S + T_{b}$ $M_{b} = 0$
$G_{B} = Y_{d} Z_{4} + Y_{Z_{3}}$ $G_{A} = T_{d} Z_{4} + T_{Z_{3}} + Y_{sat} Z_{2}$ $G_{X} = T_{d} Z_{4} + T_{Z_{3}} + Y_{sat} Z_{2} + Y_{sat} Z_{1}$ $fore Water$ $M_{b} = 0$ $M_{b} = 0$ $M_{b}' = -\frac{s}{100} h T_{b}$ $G_{c} just above = 0$ $M_{b}' = -\frac{s}{100} h T_{b}$ $G_{c} just above = 0$ $S = Pegree of Saturation$ $h = height of the location under consideration$
$G_{A} = T_{A}Z_{4} + TZ_{3} + Y_{sat}Z_{2}$ $G_{x} = T_{a}Z_{4} + TZ_{3} + Y_{sat}Z_{2} + Y_{sat}Z_{2}$ $fore Water$ $M_{b} = 0$ $M_{b}' = -\frac{s}{100}hT_{b}$ $G_{c} just obove = 0$ $H_{b}'' = -\frac{s}{100}hT_{b}$ $G_{c} just obove = 0$ $\int u_{b}'' = -\frac{s}{100}hT_{b}$ $\int z_{c} z_{c} + z_{3})T_{b}$ $\int z_{c} z_{c} + z_{3} + TZ_{3} + TZ_{3} + TZ_{2} + Y_{sat}Z_{2}$ $\int z_{c} z_{c} + z_{3} + TZ_{3} + TZ_{$
$\delta_{A} = \tau_{d} Z_{4} + \tau_{Z_{3}} + \tau_{sat} Z_{2}$ $\delta_{x} = \tau_{d} Z_{4} + \tau_{Z_{3}} + \tau_{sat} Z_{2} + \tau_{sat} Z_{1}$ $\delta_{x} = \tau_{d} Z_{4} + \tau_{Z_{3}} + \tau_{sat} Z_{2} + \tau_{sat} Z_{1}$ $\delta_{x} = \tau_{d} Z_{4} + \tau_{Z_{3}} + \tau_{sat} Z_{2} + \tau_{sat} Z_{1}$ $\delta_{x} = \tau_{d} Z_{4} + \tau_{Z_{3}} + \tau_{sat} Z_{2} + \tau_{sat} Z_{1}$ $\delta_{x} = 0$ $\delta_$
$\begin{split} & \mathcal{G}_{\mathbf{x}} = \nabla_{\mathbf{a}\mathbf{Z}4} + \Upsilon_{\mathbf{Z}3} + \Upsilon_{\mathbf{S}\mathbf{a}\mathbf{t}}\mathbf{Z}\mathbf{z} + \Upsilon_{\mathbf{S}\mathbf{a}\mathbf{t}}\mathbf{Z}\mathbf{z} \\ & \underline{\mathbf{fore \ Water}} \\ & \mathcal{M}_{\mathbf{b}} = 0 \\ & \mathcal{M}_{\mathbf{b}} = 0 \\ & \mathcal{G}_{\mathbf{c}} \text{ just above} = 0 \\ & \mathcal{G}_{\mathbf{c}} \text{ just above} = 0 \\ & \mathcal{G}_{\mathbf{c}} \text{ just below} = \mathcal{U}_{\mathbf{b}'} \\ & \mathcal{G}_{\mathbf{c}} \text{ just below} = \mathcal{U}_{\mathbf{b}'} \\ & \mathcal{G}_{\mathbf{c}} \text{ just below} = \mathcal{G}_{\mathbf{b}} \\ & \mathcal{G}_{\mathbf{c}} \text{ just below} = \mathcal{G}_{\mathbf{c}} \\ & \mathcal{G}_{\mathbf{c}} \text{ just below} = \mathcal{G}_$
Fore Water $U_0 = 0$ $U_{\omega'} = -\frac{s}{100}hT_{\omega}$ G_{c} just above $= 0$ $\frac{1}{100}$ G_{c} just below $= U_{\omega'}$ $= \frac{s}{100}(Z_2+Z_3)T_{\omega}$ S = pegree of Saturation h = height of the Jocation under consideration
$\begin{split} \mathcal{U}_{0} &= 0 & \mathcal{U}_{\omega}' &= -\underline{\leq} h \mathcal{U}_{\omega} \\ & \overline{\int}_{0} \int_{0} \int_{$
$\begin{aligned} & \mathcal{G}_{\mathcal{C}} \text{ just above } = \mathbf{O} & 100 \\ & \mathcal{G}_{\mathcal{C}} \text{ just below } = \mathcal{U}_{\mathcal{W}}' &= \frac{S}{100} \left(\mathbb{Z}_2 + \mathbb{Z}_3 \right) \mathcal{T}_{\mathcal{W}} \\ & S = \text{ Degree of Saturation} \\ & L = \text{ height of the location under consideration} \end{aligned}$
$\begin{aligned} \mathcal{G}_{C} = \mathcal{G}_{U} &= \mathcal{G}_{U} &= \frac{1}{100} \left\{ Z_{2} + Z_{3} \right\} \mathcal{T}_{U} \\ S = Degree of Saturation \\ \mathcal{L} = height of the location under consideration \end{aligned}$
S = Degree of Saturation L = height of the location under consideration
h = height of the location under consideration
from the ground water table

Flow through Soil Mass	
* permeability is the ony liquid / tuid th	ability that allows the how of wough it.
Clay → very low to lo Silt → low to mediu Sand → high Gravel → very high * Laminar flow	w -> can be considered impernuable m impervious soil
Turbulent flow ->	Re <2000 (Pipe How) Re <75 (Soil)
Henry Darcy_	Re = PVD p - pensity of fluid V - vebuity of fluid D - Average size of the particle µ - Dynomic viscosity (Ns <u>m</u> 2)

Darcy's Law v = velocity of How & he vai V~ he ; i= Hydraulic gradient v = ki Scoefficient of permenbility /hydraulic conductivity Rate of flow = q = YA = KAi V = Discharge Velocity = Superficial velocity $q = V_s A_V$ ($V_s = actual velocity$) Seepage Velocity) $V_s A_V = VA$ $V_s = \frac{A}{A_v} = \frac{\text{Total volume of soil}}{\text{volume of volds}} = \frac{1}{n}$ $V_s = \frac{V}{\eta} \left(\eta = \text{ponosity} \right)$

Velocity Potential Funct	ion (Φ)
$\frac{\partial \phi}{\partial x} = - \forall x$	
$\frac{\partial n}{\partial \phi} = -V_2$	
$\frac{\partial V_x}{\partial x} + \frac{\partial V_z}{\partial z} = 0$	$\Rightarrow \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$
Stream Function (Ψ)	Shaplace Equation in terms of of
$\underline{\partial}^{2} = -\sqrt{2}$	$\partial \psi = \sqrt{2}$
$\frac{\partial 2^{\mu}}{\partial z} = \sqrt{2}$	$\frac{\partial r}{\partial x} = -V_{\mathcal{X}}$
02	02

Fl	ow Field						
ς	lope of	¢line =	$\frac{dz}{dx} =$	20 2x 24	~	$-\frac{V_{\chi}}{V_2} =$	$\frac{V_{x}}{V_{z}}$
¢	slope of	7 Line	$= \frac{\partial 2}{\partial x}$	82 =	$-\frac{V_2}{V_2}$	•	
Fl	ow Net		02				
A 1 1	grid obto How Line	ined by a	drawing	a seri to each	es of other	equipoter	itial lines
(1)	Determino	tion of	Seepage	lass fi	rom R	eserver	Prase Ne
(2) (3)	Determin	ution of	exit gr	adient	to ch	eck the	possibility

-> used to permit the flow movement of coil particles	of seepage water without allowing the
-> prevents the prosion, 1/ p	piping tailure of soil
\rightarrow mainly of coarse grained	soil (sand 1 gravel)
Criteria	Free draining soil
(1) Dis CFilter Material)	(5
Des (Protected Material)	~
(2) 4 < <u>Pis (filter)</u> Pis (protected)	< 20
(3) Dso (Filter) < 25	
Pso (protected)	
(4) The grain size distr should be approxim material.	nibution curve of the filter material lately parallel to GSO curve of protected

Ya X I X Ya X I X I OMC-Optimal Moisture content W(Y)	
Samples $W_1 = W_3$ $Y = W_3$	
\hat{Y} $\hat{Y}_{d} = \underline{Y}$	
$e = \frac{q}{w} - 1$	
Theoritical mass unit weight (S=1001) Y dmax = <u>QYw</u> I+wq/Sr	

$n_{\ell} = \frac{v_{0}}{2}$	
V. (I-Palak	
$Id_{\max} = \underbrace{III}_{III} \underbrace{IIII}_{IIII} \underbrace{IIII}_{IIII} \underbrace{IIIII}_{IIIII} IIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	
5 la are realid line 95%	Saturation line
0.954.16	summation withe
0.95+64	
Light Compaction :- Compaction of	- packfill Material pehind
retaining walls, foundation soll	below lightly loaded structures.
Heary Compaction: - Foundational Se — Ainfield, Dams.	oil below heavily loaded structure
Heary Compaction? - toundational Se — Ainfield, Dams. Standard Proctor Test to simula of the field	ate the light compaction condition
Heary Compaction: - toundational Se — Ainfield, Dams. Standard Proctor Test to simula of the field for neary compaction, Modified	ate the light compaction condition
Heavy Compaction: - toundational Se — Ainfield, Dams. Standard Proctor Test to simula of the field For heavy compaction, Modified MPT- Size of mould same as	ate the light compaction condition Proctor Test used. SPT (standard Broctor Test)
Heavy Compaction: - toundational Se — Ainfield, Dams. Standard Proctor Test to simula of the field For heavy compaction, Modified MPT - Size of mould same as Wt. of hammer = 4.89 kg	ate the light compaction condition Proctor test used. SPT (Standard Proctor Test) No. of layers = 5
Heary Compaction: - toundational Se - Ainfield, Dams. Standard Proctor Test to simula of the field for neavy compaction, Modified MPT - Size of mould same as W1. of nammer = 4.89 kg Height of drop = 450 mm	oil below heavily loaded structure oute the light compaction condition l Proctor Test used. SPT (Standard Proctor Test) No. of Jayers = 5 No. of blows = 25

20 mm Retained 4.75 (>20%) if yes (Mould = 150mm) [No. of blows = 56] mpactive Effect t is defined in terms of compaction energy per unit vol. $\Xi = (No. of blows per layer) \times (No. of layers) \times (Wb. of nammer)$ Vol. of mould Parameters affecting the compaction of goil (1) water content (2) compactive effect (2) Types of soil (3) Method of Compaction	Sieve	$\boldsymbol{\gamma}$	
4.75 (>20%) if yes (Mould = 150mm) [No. of blows = 56] mpactive Effect t is defined in terms of compaction energy per unit vol. $ = (No. of blows per layer) \times (No. of layers) \times (Wt. of nammer) \\ Vol. of mould $ Parameters affecting the compaction of goil (1) Water content (2) compactive effect (3) Types of soil (4) Method of Compaction	20 MM	Retained	
[No. of blows = 56] t is defined in terms of compaction energy per unit vol. $ = (No. of blows per layer) \times (No. of layers) \times (Wt. of nammer) \\ $	4.75	(>20%) if yes	(Mould = 150mm)
mpactive Effect t is defined in terms of compaction energy per unit vol. $= (No. of plows per layer) \times (No. of layers) \times (Wt. of nammer)$ Nol. of mould Parameters affecting the compaction of goil (1) Water content (2) compactive effect (3) Types of soil (4) Method of Compaction		•	$[N_0.of blows = 56]$
t is defined in terms of compaction energy per unit vol. $E = (No. of plows per layer) \times (No. of layers) \times (Wt. of nammer)$ Nol. of mould Parameters affecting the compaction of goil (1) Water content (2) Compactive effect (3) Types of soil (3) Method of Compaction	ompactive effec	<u>t</u>	
t is defined in terms of compaction energy per unit vol. $E = (No. of plows per layer) \times (No. of layers) \times (Wt. of nammer)$ Nol. of mould Parameters affecting the compaction of goil (1) water content (2) compactive effect (2) Types of soil (3) Method of compaction			
E = (No. of blows per layer) X (No. of layers) X (Wt. of nammer) Vol. of mould Parameters affecting the compaction of goil (1) Water content (2) compactive effect (2) Types of soil (3) Types of soil (4) Method of compaction	t is defined in	terms of compaction	energy per unit vol.
E = (No. of plows per layer) X (No. of layers) X (Wt. of nammer) vol. of mould Parameters affecting the compaction of goil (1) Water content (2) compactive effect (2) Types of soil (3) Types of soil (4) Method of Compaction	- (
Vol. of mould Parameters affecting the compaction of goil (1) Water content (2) compactive effect (2) Types of soil (2) Method of compaction	E = (No. of b)	ows per layer J X (No-of	layers) X (Wt. of nammer)
Parameters affecting the compaction of goil (1) Water content (2) compactive effect (2) Types of soil (3) Method of Compaction		Val of maula	
Parameters affecting the compaction of goil (1) Water content (2) compactive effect (3) Types of soil (4) Method of Compaction		vor g mour	,
Parameters affecting the compaction of goil (1) Water content (2) Compactive effect (3) Types of soil (4) Method of Compaction	0		
(1) Water Content (2) Compactive effect (2) Types of soil (2) Types of soil (2) Method of Compaction	Parameters a	fecting the compact	on of soil
(2) Compactive effect (2) Types of soil (2) Method of Compaction	(1) Water Cont	ent	
(2) Types of soil (2) Method of Compaction	(2) compactive	effect	
Dethod of Compaction	(2) Types of	soil	
	(4) Method o	- compaction	

Consolidation The process of change of volume of soil due to expulsion of water under transient flow condition from voids which occurs on account of dissipation of excess pore water pressure under sustained / constant static loading. <u>++++ 45</u> Seepage Flow : Ne = hrw Transient Flow : Us = Ywhw Sand

Ре ir	pending on the stress history, the sail is divided
(1)	Normally consolidated. The soil in which the present
	nor mal effective stress is the maximum stress It has eve
	been experienced in its stress history. (The consolidation
	is already over at the present state of stress)
(2)	over consolidated: present state of stress is
	dess than the maximum stress it has
(3)	Under consolidated: The soil is yet to consolidate
	under the present effective stress.

Using Fourier series expansion 2 putting the boundary conditions $\mathcal{H}_{e} = \sum_{n=1}^{\infty} \left(\frac{1}{d} \int_{0}^{2d} \mu_{i} \sin\left(\frac{n\pi^{2}}{d}\right) dy \quad \lambda_{in}\left(\frac{n\pi^{2}}{2d}\right) \exp\left(\frac{n^{2}\pi^{2}\omega t}{4d^{2}}\right) \quad \text{where } n \text{ is an integer.}$ $n = cren \qquad l - cos n\pi = 0 \implies 4e = 0$ $n = odd \qquad l - cos n\pi = 2$ _ Putting the above conditions $\mathcal{H}_{e} = \sum_{n=1}^{n=\infty} \frac{2u_{i}}{n\pi} \left(1 \cdot \cos n\pi\right) \operatorname{Ain}\left(\frac{n\pi z}{2d}\right) \exp\left(-\frac{\pi^{2}\pi^{2}Ct}{4d^{2}}\right)$ Putting m= 2n+1 , where n is an integer \rightarrow $T_{V} = \frac{C_{V}t}{d^{2}}$ $\mathcal{H}_{e} = \sum_{m=0}^{m=0} \frac{2u_{i}}{(2m+i)\pi} \left(1 - \cos\left(2m+i\right)\pi\right) \sin\left(\frac{2m+i}{\pi}\right)\pi \leq \exp\left(-\left(\frac{2m+i}{\pi}\right)^{2}\pi^{2}\tau_{v}\right)$ $= \sum_{m=0}^{\infty} \frac{24i}{M} \sin \left(\frac{mZ}{L} \right) \exp \left(-M^2 T_V \right)$ d = H (Single Dramage) d= H/2 (pouble Dramage) $M = (2n+i)\pi , \quad T_r = C_r t = Time \ Factor \\ \frac{1}{2} d^2$ (constant d = distance of dramage path = the maximum distance travelled by water particle to neach the free dramage layer

HE I lab somple $T_v = \frac{Crt}{d^2}$ 100 PK4 1m Hf sand pile Field ty = time required to attain a certain degree of consolidation = U % Triag = Tripled te= " 1. at fild = U=/0 $C_{10b} = C_{1} \text{ field}$ $d_{\ell} = d_{1}a \text{ field} \text{ for single drainage, } d_{\ell} = H_{L/2} \text{ for double}$ $d_{f} = H_{1} \text{ for double} \text{ field} (d_{\ell} = H_{\ell} \text{ for } H_{\ell} \text{ for } H_{\ell} \text{ for double} \text{ for double}$ $d_{f} = H_{1} \text{ for double} \text{ field} (d_{\ell} = H_{\ell} \text{ for } H_{\ell} \text{ for$ 60 60' + 46' 6, >6, (NC) $6_0' < 6_c'$ (oc) q AH = CrH Logio (60'+46 6, + 10' < 6c' 6, < 6, < 6, + 16' $\frac{t_L}{dt^2} = \frac{Tf}{dt^2}$ ⇒ T4=? $\Delta H = \frac{C_{Y} H}{1 + e_{0}} \log \left(\frac{6c'}{6c'} \right) + \frac{C_{0} H}{1 + e_{1}} \log \left(\frac{6c' + \Delta 6'}{6c'} \right)$

The deformation / volume change due to consolidation has two aspects:-
(1) The amount of volume change will occur.
(2) how long will it take for the volume change to accur.
> Depends
(a) How much stress is abblied i.e. loading condition
(b) How much soil is affected i.e. the zone of influence
(c) How compressible is the soil i.e. the property of soil (Cc)
pependo on a
(a) Amount of volume change to occur
(b) Number and location of tree Draining loyers. liquid limit
(c) Per meability of soil i.e. property of soil.
KG
Engineering property of soil Ce = 0.007 (WL-10) [Removable soil somple]
$C_{c} = 0.009 (W_{L} - 10) [Undiskurbed " "]$
Wi - Liquid dimit of soil
· · · · ·

Soil dedives its shear -	st rength from the following: -
1) Resistance due to interl	ocking between the particles.
2) Frictional Resistance be	etween the particles Laliding function, Rolling
friction, both)	· 0 0
3) Cohesion (Bonding) betw	een the particles
- 0-	•
Frictional Resistance Concept	
•	
· ^ ا	Block
Rough surface FA	Fr=Available frictional
	resistance
W $F_R = W_\mu = V$	Ntan S
	S= angle of triction at the interface
0	
Ra	
RA	
R X FA	
$R \propto R$ $F_{A} = Angle of Obliguity$	$\alpha_{max} = \phi$
R Fa $\alpha = \text{Angle of Obliquity}$ wher $F_a = F_e$ (α is maximum.)	$\alpha_{max} = \phi$ $\phi = Angle of Friction in soil mass.$
R Fa x = Angle of Obliquity wher $F_A = F_R$ (x is maximum) wtan $x = wtan S$	A max = ϕ ϕ = Angle of friction in soil mass. Applicable user, the soil is purely frictional (c=0)

î	In scal life, angle is gluceys half
24	$MAJ \rightarrow 45^{\circ} + \phi/2$
$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\frac{1+\sin\phi}{1-\sin\phi} = \tan^2\left(\frac{45+\phi}{2}\right)$
$6_1 = 6_3 \left(\frac{1 + \sin \phi}{2} \right)_{\pm 2C_1} $	$\frac{1-sin\phi}{1+sin\phi} = \tan^2\left(\frac{4s-\phi}{2}\right)$
$\frac{(1 - \sin \phi)}{6_3 = 6_1 \left(\frac{1 - \sin \phi}{1 + \sin \phi}\right) - 2C \sqrt{\frac{1 - 1}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	sind felationship blw Sind G and Gz
$6_{1} = 6_{3} \underbrace{(1 + \sin \phi)}_{1 + \sin \phi} + 2c \sqrt{\frac{1}{1 + \sin \phi}}_{1 + \sin \phi}$	$\frac{ +\sin\phi }{ -\sin\phi } = \tan^2\left(\frac{45+\phi}{2}\right)$ $\frac{ -\sin\phi }{ +\sin\phi } = \tan^2\left(\frac{45-\phi}{2}\right)$ $\frac{ -\sin\phi }{(+\sin\phi)} = \tan^2\left(\frac{45-\phi}{2}\right)$ $\frac{ +\sin\phi }{(+\sin\phi)} = \tan^2\left(\frac{45-\phi}{2}\right)$

4 6, and 63 are known, and any plane AB inclined to angle O to the dish of major principal planc, the normal stress and shear stress 'C'.

	$6 = \left(\frac{6_{1}+6_{5}}{2}\right) + \left(\frac{6_{1}-6_{3}}{2}\right) \cos 2\theta$		
	$C = \left(\frac{6, -6_3}{2}\right) \cdot \sin 2\theta$		
The sum of	principal stresses on mutually perp. plane is const.		
$6i + 6_3 = 6_{n1} + 6_{n2} = constb.$			

		$6_1 = 6_3 + 6_d$
Application	of Load (Iwo Stages)	
T	Application of confining pressur	Application of Differential s
lest	Stage-I cell pressure (All around II	Stage-2 (shearing of soll)
1111	(-37 (No ghearing)	
00	un consou darea	Chroines when memories star 12
	(Utainage vaire remains closed)	(Drainage valve remains closed
CU	Consolidated	Undrained
	(Drainage is allowed)	Corainage valve remains closed
CD	consolidated.	prained
	(prainage is allowed)	(brainage is allowed)
X (du)		
\bigcirc \land		

NC Stress Ductile Behaviour Stress	Back Pressure is abblied 20 saturate the soil through the drainage pipe/a seperate pipe is connected to the soil somple.
Normal strain E	Back pressure < Confining Pressure
$c_i \phi$	GKPa 10 KPa = 25
$\frac{\Delta u}{\Delta \sigma} = 0.5, \qquad \Delta u = 0.9 \qquad \text{Mohr} \ \alpha$ $\frac{\Delta u}{\Delta \sigma} = 2 K_{0}$ $= 1 \mu_{4}$ $6_{1f} = 6_{3f} + 6_{df}$ ψ $6_{3f} = 6_{3f} - U_{f}$	Coulomb ralial for tay (tord course $NC = \frac{1}{2}$ $Uighth D^{oo} 09 = 3$ $DCR = Gexperienced = \frac{heavily OC}{liw}$ Foremut
$G_{1r} = B_{3f} - U_{f}$	→ _{€·1} .

