

CE382A -lavement Engineering Part	Taught using Hides!
CE382A — Pavement Engineoring Part Broad Course Content	
· Basic Properties of pavement materials	lavement Distress
· Performance based evaluation of bituminous mix.	· portle · crushing
· Viscoelastic modelling	depression cracking
· Pavement Analysis land Design	· deliminated layer
" Geometric Design	Why cracks?
* Geometric Design * Pavement Districts and Maintenance	Differential settlement
	Broash - low level distress
India - 2nd largest noad network in the world.	this surfacing, microsurfacing_
l l	Emulsion - colloid
	Bitumen molecule + water(lig.)
Typical Pavement Composition	
Bituminous/Flexible pavement	Concrete [Rigid pavement
///	
Material Bitumen 4 Aggregate	Cement, Aggregate & Water
cost Less expensive	More Expensive
Durability Less durability	More durability
Maintenance Require more Greg. maintenance	Require less treg. maintenance
· · · · · ·	· · · ·
Crusher Plant – Why? – Batch Mix Plant – Compac	tion

Pavement Material characterization
·Soil · Aggregate
Bitumer Cement
why should we bother about these materials?
· Load beaning capacity
Durability
· Performance , etc
Important Properties
Stringth 1 stability skid resistance . Noid ratio
· Purability · Fatique resistance · Beaning capacity. · Moisture susceptibility
How to evaluate those properties
Tests are there,
Utility of those properties
These properties ensure that pavement perform
will and as per intended design well.

Typical cost comparison

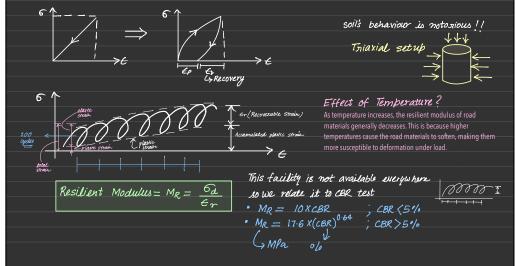
· Surface

·Steel

·Bituminous pavement - lower initial construction cost. - more cost effective in short term. - require more maintenance in long term. · Cement concrete pavement - higher initial construction cost. - more cost effective in long term - require less maintenance in long term.

Lavoids mud pumping

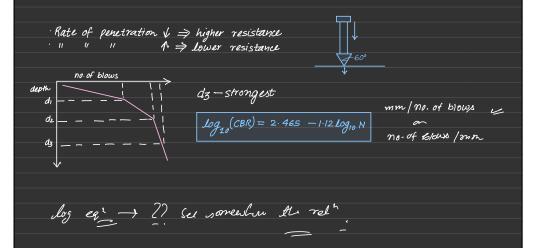
Good niding quality.


Lec 2-PKA - 2 Mar 2023	Taught resirry stides!	confined to a	J gets distributed to
Bituminous Pavement	Bitumer vs Aggregate quantity	certain area	A entire area
Material→ Purpose→	in bitumenous mixture? (4-7%)		
Subgrade Load transfer	Generally, Bitumen -> 4 to 7%		
Subbase Minimize stress & subgrade	Aggrigate → 93 to 96 %	X////	
Base course Good suiding quality	Pesign Life 2		
Bituminous Drainage.	(Lenerally 15 to 20 years,	Ritunaimoura Paulamant	Country Constants Principalit
Cement Concrete Pavement	Some may last upto 30 years.	Bituminous Pavement	Cement concrete Paviment
Material -> Purpose ->	Decion Life 2	-due to slab action	-due to grain to grain contact
Subgrade Load transfer	Design Life?	· Better riding quality?comfort level · Effect of temp.	It has better suiding quality as
· Base · DLC provides strong suppo	Generally, 20–30 years. prt	- Allow of comp.	compared to bituminous pavement
Surface & avoids mud pumping		Different types of Bituminous Material	
Steel Good miding quality.			Eilter Layer - Curring #
Typical cost comparison		· Tack coat - purpose -?	Filter Layer Subcourse II Drainage Lawa
·Bituminous pavement — lower initial	construction cost.	Prime coat - Bonding.	Drainage Layer
	sective in short term.	- to control dust particle - to plug the surface · WBM - Water Bound Macadom	es. Filter layer
	raintenance in long term.	· WBM - Water Bound Macadam	
· Cement concrete parement - higher init.		WMM - Wet Mix Macadam.	
	fective in long term	- Quality control of WMM is better than	WBM.
	maintenance in long term ,	· Two main functions - 1. distribute load	
Pavement Material Characterization Soil Aggregate Bitamen Cement Why should we bother about these materia Load bearing capacity Durability Parability Parability Stringth estability Skid resistance Stringth estability Moisture susceptibility How to evaluate those properties Tests are there Utility of those properties These properties ensure that pavement well and as per intended design well.	e . Woid ratio ce . Beaning capacity perform	· Bound ed and Unbounded Pavement St · Dowel bar — · Tie bar — · Why plastic sheet for bitum.? — · Why plastic sheet for bitum.? — · Why plastic sheet for bitum.? — · U = 1000 m B = 7m · GSB = 325 mm · GSB = 325 mm · WMM = 250 mm · DBM = 125 mm · BL = 50 mm Cost Ratio?? · Beaning Cabacity (strain · void ratio · cement — cohesionless poil · Lime — cohesionless poil	? L= W= ~ (Alualate Volume . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		woven type?	

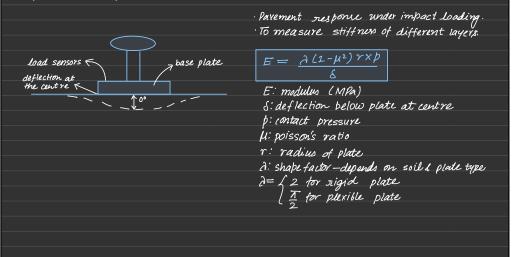
Lecture 3 - PKA - 13 Mar 2023

trength	Volumetnic Stability	Long term strangth
rainage potential	Leaching potential	Ease of compaction
erformance under dy. Tests on soil	Namic and static load	
Basic Test	Mechanical properties based test	Field based tests
Attenberg Limits	CBR test 100%	· DCPT
Specific gravity		'LWD test
Gradation	· Durability test	·Plate Load Test
Compaction	Direct Shear test	
Free swelling index pH	·Permeability lest	
off C	Flexural Strength test	
<i>V</i> (1		

Resilient Modulus 🗸


Resilient modulus is a measure of how well a material, such as soil or pavement, can resist deformation and recover its shape after being repeatedly loaded or stressed. It is an important property in predicting the long-term performance of pavements and other geotechnical structures. Think of it as a material's ability to "bounce back" after being pushed or loaded repeatedly.

Field Test


Dynamic Cone Penetration Test (DCPT)

During a DCPT test, a metal cone with a weight is dropped onto the pavement surface, and the penetration depth is measured. This process is repeated at regular intervals along the pavement section to determine the strength and stiffness of the pavement layers.

LWD test (Light Weight Deflectometer) test

An LWD test is a way to check how strong a road is without damaging it. A small plate is pushed down onto the road, and sensors m'easure how much the road bends. This tells engineers how strong the road is and if it can handle heavy traffic. The LWD test is quick, inexpensive, and doesn't require the road to be closed.

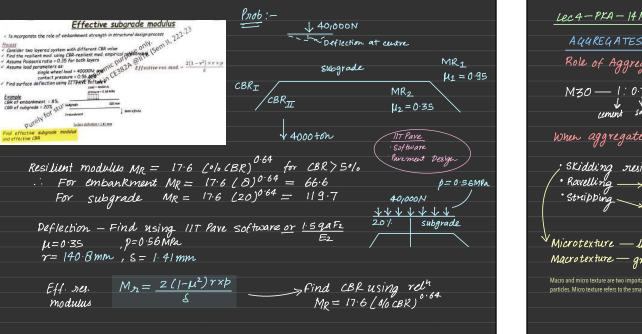
Plate Load Test (PLT)

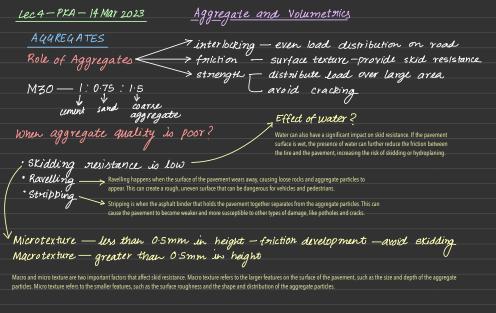
A plate load test is a way to check how strong a road is by applying a known weight onto a metal plate that is placed on the road surface. Engineers use a hydraulic jack or weights to push the plate down onto the road, and instruments measure how much the road deforms or bends. By measuring the deformation, engineers can determine the load-bearing capacity of the road and its suitability for heavy traffic. The plate load test is a simple, cost-effective way to check the strength of a road, but it can be time-consuming and may require the road to be temporarily closed during the test.

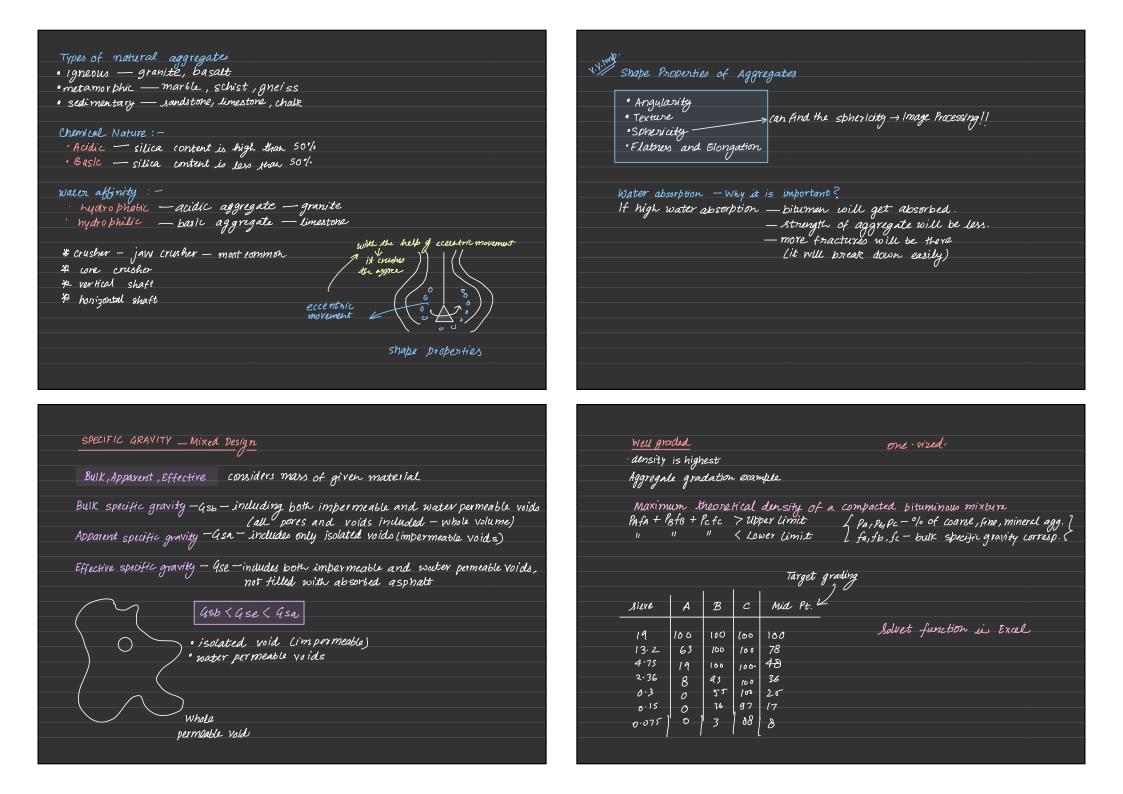
· Initially developed to estimate searing capacity of soil.

Reaction

frame


Effective Resilient Modulus


It takes into account the complex interactions between the material properties, loading conditions, and environmental factors, such as temperature and moisture.


Effective resilient modulus vs resilient modulus

resilient modulus is a basic measure of material stiffness under laboratory conditions, while effective resilient modulus is a more realistic and comprehensive measure of material strength and stiffness under real-world conditions.

Effective resilient modulus $M_R = \frac{2(1-\mu^2) r \times p}{\delta}$ MR: Cfflitive resilient modulus (psior MPA) 5: deflection of povement surface under loading (mm) µ: poisson's ratio (unitless) r: radius of circular loading plate (mm) \$: pressure \$\$ effective CBR.

Lecture 5 - PKA - 16Mar 2023	
Aggregate Soil Sil Flexible Povement	
Bitumen -> has notorious behaviour bco2 of visco elastic nature	
Marshall Mix Design — Volumetatics — Do on your own	•
	L
0 0 0 Different grades of bitumen	•
A B C D Choose based on softening point / viscosity.	•
softners> softners V hardners 7	
viscocity	
· Chemistry Resins · Composition	
• Bitumen — Maltine — Resins Composition	
Asphaltene Saturates	
- Highest Polarity - Responsible for Stiffness	
 Mechanical Properties of Bitumer — Stiffners, Elasticity, Ductility, Conesion Fatigue resistance, Adhesion. 	
· Bitumen is a colloidal structure (small particles of asphalt in a mixture	
of oils and waves)	
What properties do we want out of bitumen ?	
• Affinity towards aggregate	sut
 less temperature susceptible. 	bin
• Fine balance blw stiffness and flexibility.	/
· Should be thuid, enough to cost aggregate but shouldn't segregate during transportation.	
• Aging Resistivity Short term aging — hoppen during production stage	
Long term aging — happer when placed in field 2 exposed to atmosphere.	
Environmental Loading	
Traffic Loading S Unmodified bitumen is not good for use	
with the second survive good for the	
Bitumen Modification Brocers \rightarrow (we have different Rinds of modifiers) \mathcal{P}	
modifiers _ polymens — SBS [Styrene Butadiene Styrene) (S 43-5°le by wt. of bitumen [more costy]	2400
\vee crumb subber — waste tyres and suffine them to be	
used as modifiers	

4>5-20% by wt. of bitumen

- Imp mechanical property Stability of Bitumen * Imp for exams 11 Colloidal Index = (<u>Saturates + Asphaltene</u> <u>Resins + Aromatics</u> Ability to rusist deformations under traffic Loads. More stable bitumen has less colloidal index. Asphaltene 1 🛶 Colloidal Index 1 Sproportionally maltene content is Y Chemistry of Bitumen > Although Less but it has bigger rale to play. C 82-88% Asphaltene 5-25 %-8-11% 5-20% Saturates Sulfur 0-60/0 40-650/0 Aromatics -> Most of the bitumen Oxygen 0-1.50/6 is aromatics Resino 10-20 % Nitroger 0-1.1010 face layer >Where should we place modifiers?

· polymer-we prefer using it in binder.

· crumbrubber - we put at surface

· Classify bitumen based on viscosity 3000 ± 200%

poise

Penetration grading -1990 - 30/40

however it can be used in surface as well

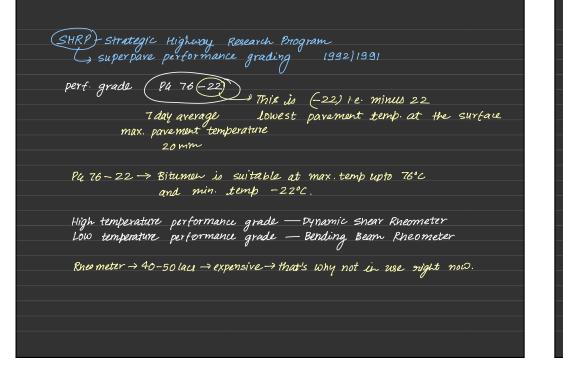
(> What's the problem? Why we changed to discosity grading now?

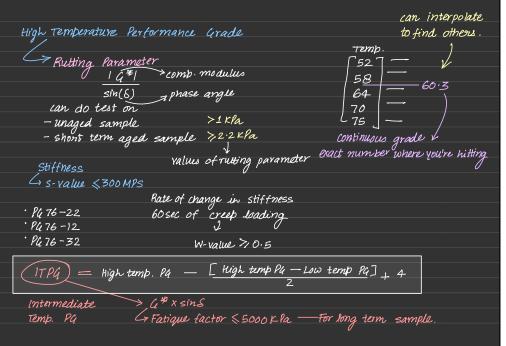
- noise canceller to reduce noise in locality.

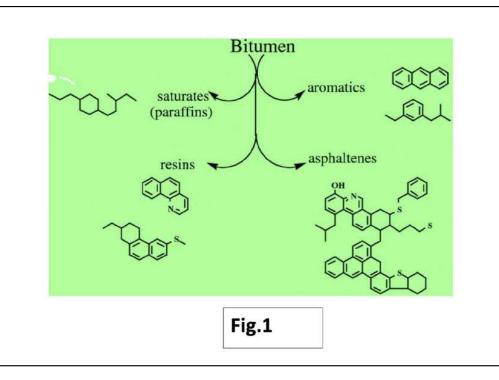
60/70

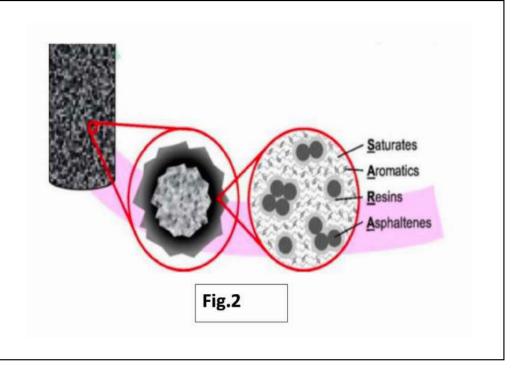
• It doesn't reflect grading properties. It had several eimitations. • Take into account the temperature dependence of bitumen.

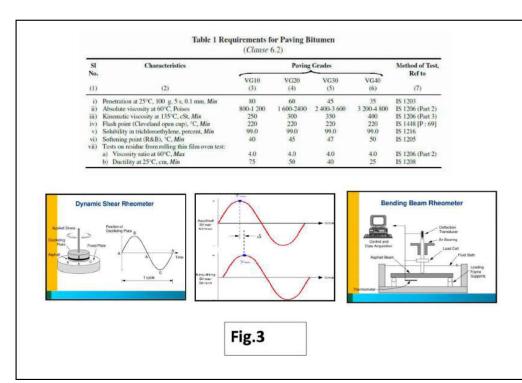
> 3000×<u>0</u> = 600 1.5

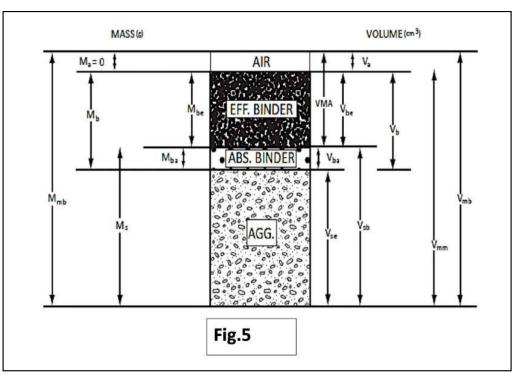

> Shifted to viscosity grading - 2005 - V410, V420, V430, V440

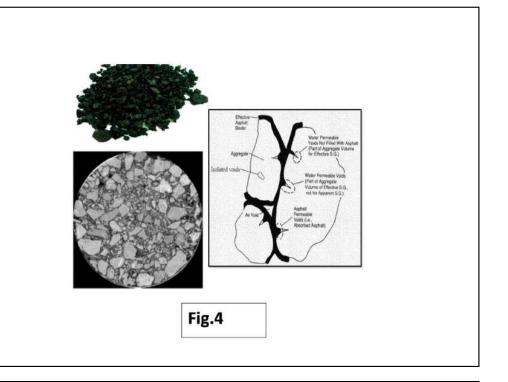

80/100

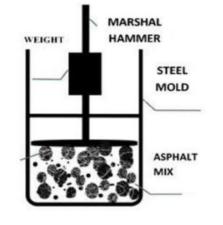

ler Layer

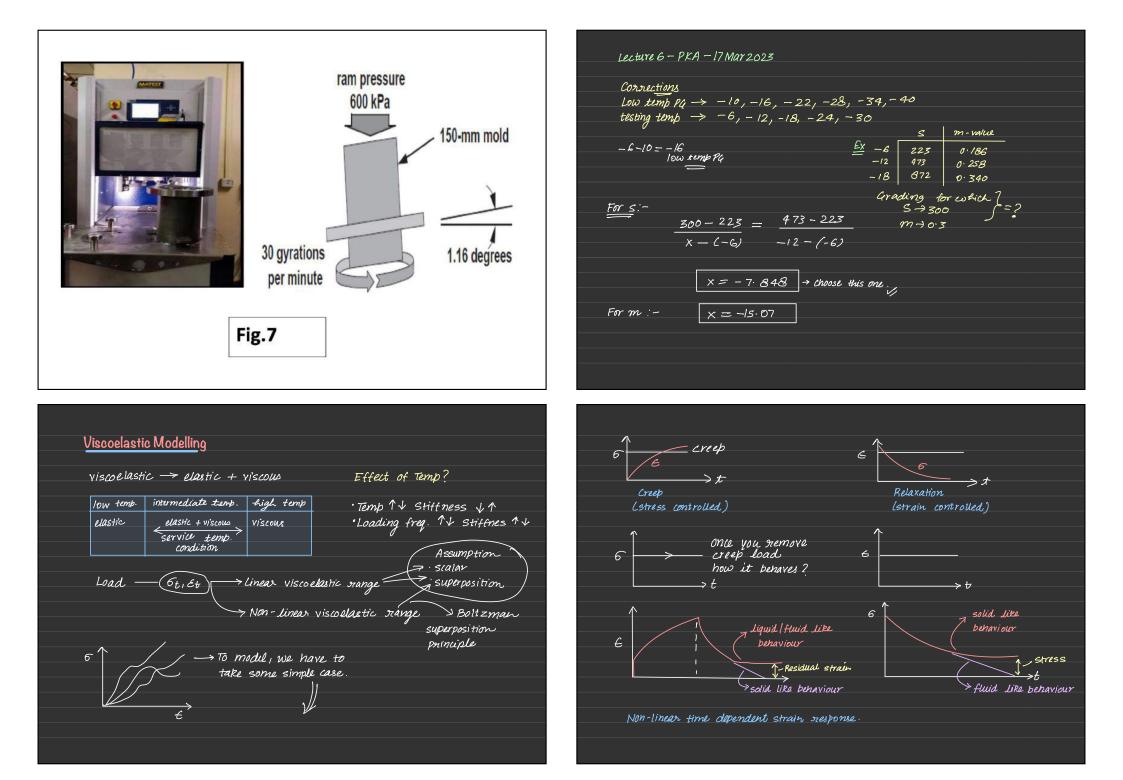

-3600)

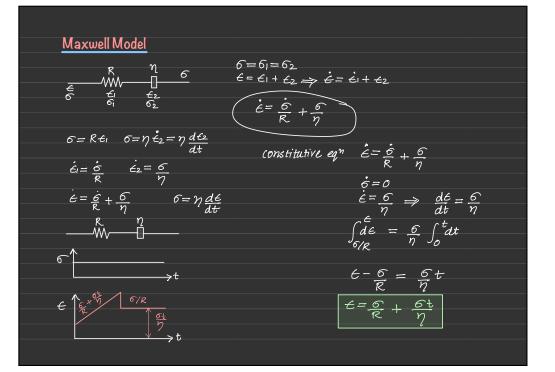

Bitumen Grading

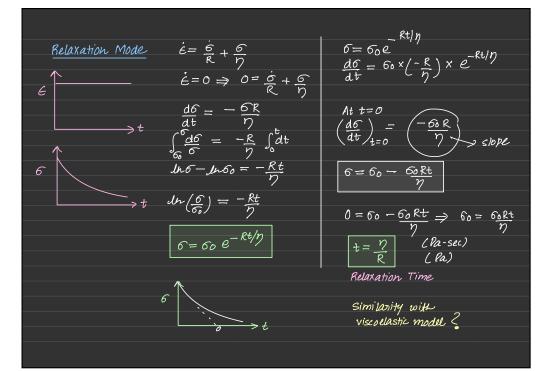


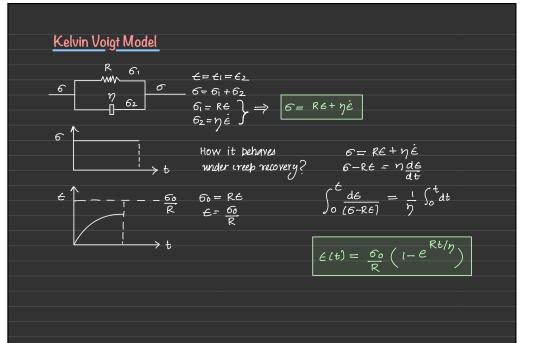


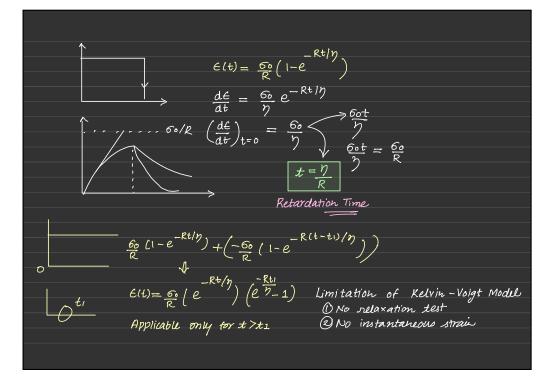


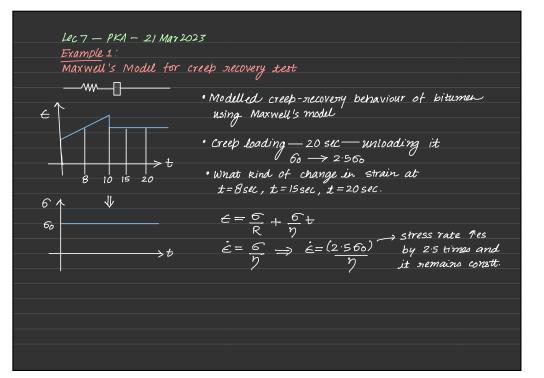


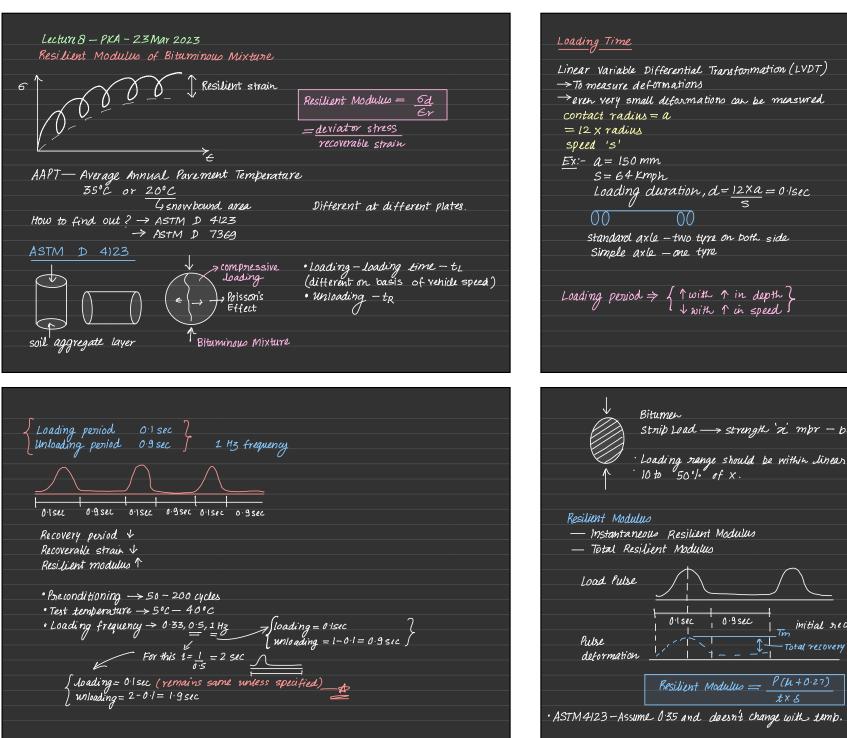








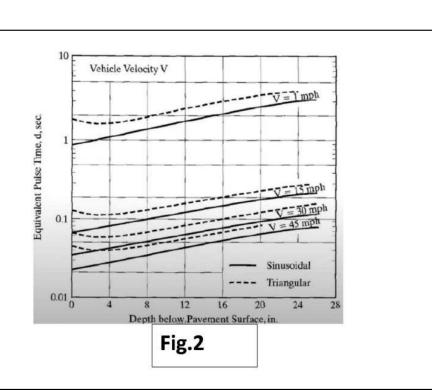


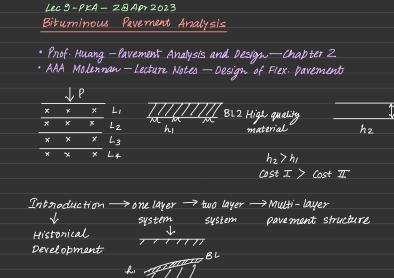


$\frac{K-V Model}{G_0} = 4 \times 10^{-4}$ $\frac{G_0}{R} = 200 \text{ KPa}$ $R = 500 \text{ MPa}$ $\gamma = 34000 \text{ MPa sec}$ $K = 500 \text{ MPa}$	50 sec LOO sec 200 sec 500 sec 500 sec 500 sec 500 sec 500 sec 500 sec 500 sec 500 sec 500 sec 50
$\begin{aligned} \epsilon(t) &= \frac{6}{R} \left(1 - e^{-\frac{Rt}{7}} \right) \\ At \ t &= 50 \ sec \ - \epsilon(t) = 2 \cdot 1 \times 10^{-4} = 2.08 \mu \end{aligned}$	
At $t = 100 \text{ sec}$ $(t) = 200 \text{ pc}$ At $t = 200 \text{ sec}$ $(t) = 300 \mu$ At $t = 200 \text{ sec}$ $(t) = 300 \mu$ At $t = 5000 \text{ sec}$ $(t) = 400 \mu$ At $t = 5000 \text{ sec}$ $(t) = 400 \mu$	€
70 % of max. Strain value \longrightarrow How much time $\in \longrightarrow 0.7 {\rm Gmax}$, changing with initial rate	

Loading Time	LVDT deformation
Linear Variable Differential Transformation (LVDT)	
-> To measure deformations	++
\rightarrow even very small deformations can be measured	
contact radius = a	
= 12 x radius	
speed 's'	
\underline{Ex} :- $a = 150 mm$	
S = 64 Kmph	<u>K</u> }
Loading duration, $d = \frac{12 \times a}{5} = 0.1 \text{ sec}$	d
00 00	$d = \frac{12 \times a}{2}$
standard axle -two tyre on both side	$a = \frac{1}{s}$
Simple axle - one tyre	(duration of loading)
	¢ 07
Loading period $\Rightarrow \{ \uparrow with \uparrow in depth \} \\ \downarrow with \uparrow in speed \}$	
Bitumer Strip Load → strungth 'n' mpr – ,	· · · · · · · · · · · · · · · · · · ·
Loading range should be within linea	n viscoelastic range
10 to 50 % of x.	Tm+0.005 300
	To t Oil
Resilient Modulus	$\frac{T_m + 0.1}{2}$
— Instantaneous Resilient Modulus	$=T_{m}+0.05$
— Total Resilient Modulus	
	Tm
Load Pulse	0.1 + 55 · 1. of unloading
	time = 0.9× 0.55 + 0.1
	= 0.495 + 0.1
0.1 sec 0.9 sec initial re	$covery = 0 \cdot S9S_{sec}$
Pulse Total recover	y value
deformation $\frac{1}{1}$ 11	Probably a matrice for the second
Reciliant Modulus - P(H+0.27)	P: applied vertical pressure
Residient Modulus $\implies \frac{P(\mu + 0.27)}{P(\mu + 0.27)}$	µ: poisson's ratio

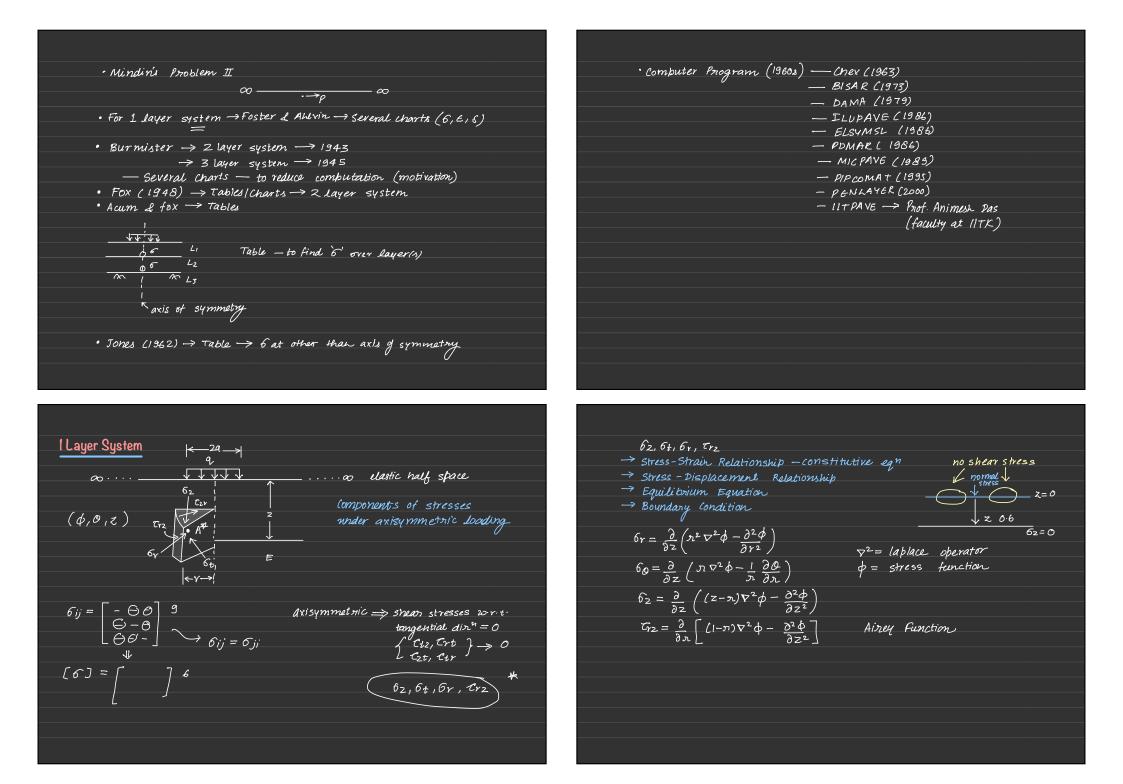
txs

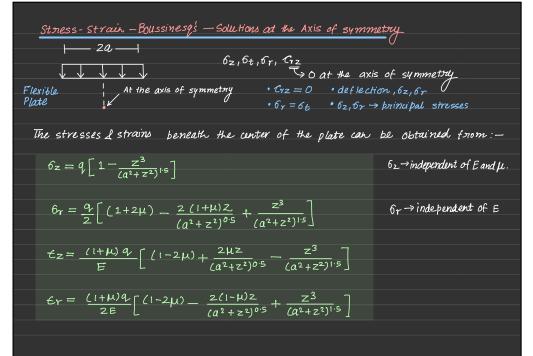

t: pavement thickness


S: ventical strain deformation

Mix type	Average Annual Pavement Temperature °C					
	20	25	30	35	40	
BC and DBM for VG10 bitumen	2300	2000	1450	1000	800	
BC and DBM for VG30 bitumen	3500	3000	2500	2000	1250	
BC and DBM for VG40 bitumen	6000	5000	4000	3000	2000	
BC with Modified Bitumen (IRC:SP:53)	5700	3800	2400	1600	1300	
BM with VG10 bitumen	500 MF	a at 35°	C			
BM with VG30 bitumen	700 MF	a at 35°	C			
RAP treated with 4 per cent bitumen emulsion/ foamed bitumen with 2-2.5 per cent residual bitumen and 1.0 per cent cementitious material.						

Fig.1


h2 >>> h1

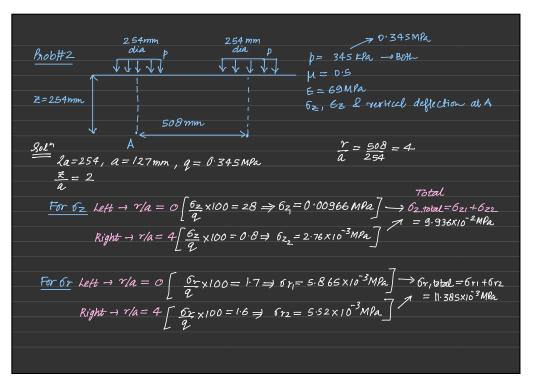

Elastic mask • Kelvin Problem (1885) stress strain Infinite mass system (in all 3 dir") · Boussiner Problem (1885) elastic half space *a*0 20 circular 20 20 Load · cerruti's Problem traction force D dastic half space 00 horizontal Load · Mindin's Problem I $6_{2} = \frac{\rho}{2\pi} \frac{32}{(6 \, 4z^{2})}^{5/2}$ 00 √p Point load · Indeterminate at z=0, 5z= 00

Histonical Developments

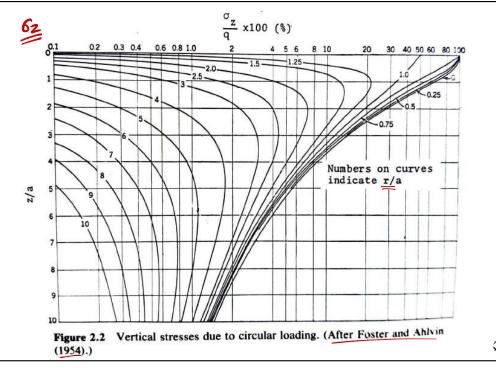
BLZ convential

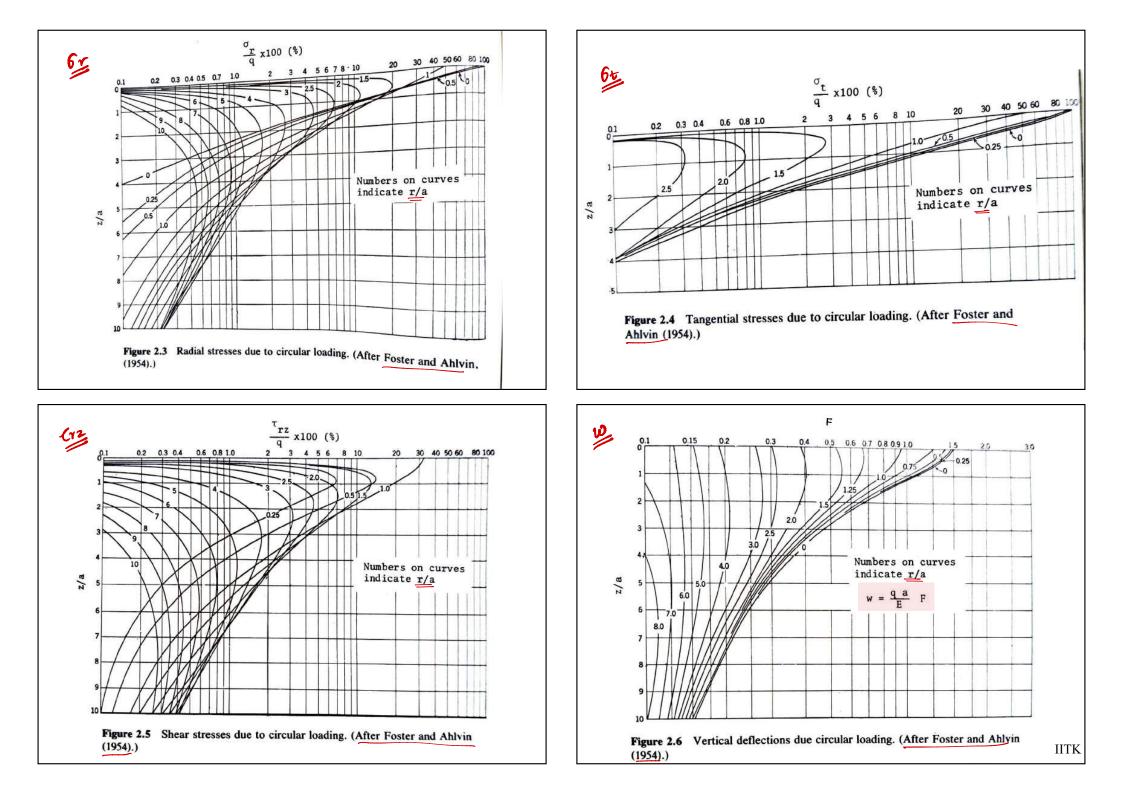
material

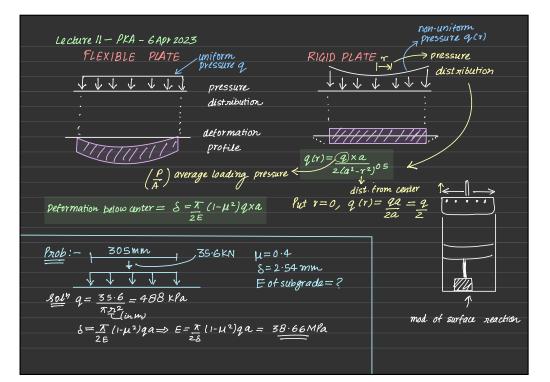
Lecture 10–PKA–31 Mar 2023		
Prob#1		
254mm	E=68·9 MPa	Q = 0.344 MPa
Q=0·344MPa	μ= 0·3	·
	Determine 6, E, defi	ection (vertical) $f = ?$
half-space		at A* J
254 mm		Axisymmetric.
A** ~~~~		z= 254mm
		q = 0.349 MPa
<u>Solh</u> 2a = 254 mm ⇒a = 127 mm		V
$\hat{0}_{2} = q \left[1 - \frac{Z^{3}}{(a^{2} + Z^{2})^{1/5}} \right] = 0.344 \left[1 - \frac{254}{(a^{2} + Z^{2})^{1/5}} \right]$	<u>13</u>] = 0.098M	1Pa
$6_t = 6_r = \frac{q}{2} \left[\frac{(1+2\mu) - \frac{2(1+\mu)z}{(a^2+z^2)^{0.5}} + \frac{z^3}{(a^3+z^2)^{0.5}} \right]$	37 = (- 0 ·001715 MF	Pa) = (- 1.715 KPa)
$\frac{2}{2} \left[(a^2 + 2^2)^{0.5} (a^2 + 2^2) \right]$	2) 1.5	
$w = \frac{(1+\mu)}{E} q_{a} \left(\frac{q}{(a^{2}+z^{2})^{0.5}} + \frac{(1-2\mu)}{a} \right) \left(\frac{a}{a} \right)$	$a^{2}+z^{2}b^{0.5}-z$) =	
	/	
$6r = -1.77 \times 10^{-3} MPa = 6t$		
$\sigma_z = 0.098$ MPa		
$E_z = 1.44 \times 10^{-3}$		
$E_{r} = 4.44 \times 10^{-4}$		

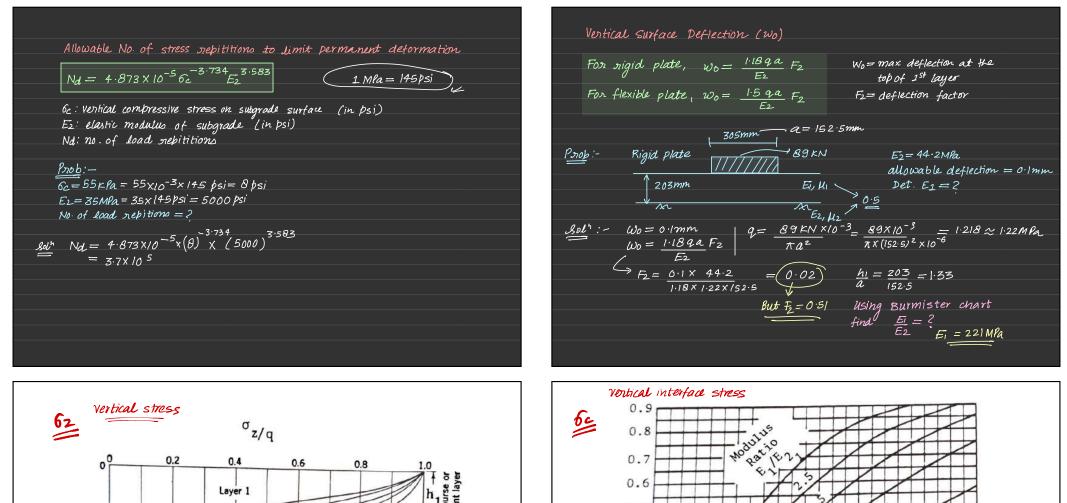

The	vertical deflection	on w can be	determined	from :-		
	(1+4) a a (0	(1 - 24) [(2)]	1-2)0.5	1)	
ω	= <u>(1+µ)qa</u> { E {	$\frac{\alpha}{(a^2+7^2)0.5}$ +	$\frac{a}{a}$	+2) -2j	6	
Fi	r µ=0.5 W=	3q.a ²				
	r μ=0·5,w= 2E	(a²+z²)0:5				

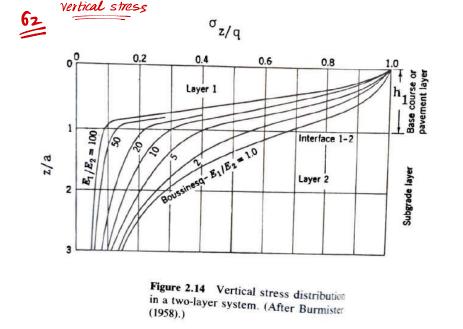
Ez = _ [<u></u> [6 ₂ -μισ	$r + \delta_t)$	Prob#2
E	L		Winearly Elastic & I sotropic Material
Gr = 1 E	. [6 _γ -μ(6 _z	$(+\sigma_t)$	Put values from prex. question and check whether this relationship holds true or not.!!
6 _t = <u>1</u> E	- [6 _t -μ (6r	+6z)]	(; All values coming same and matches the prev. prob.

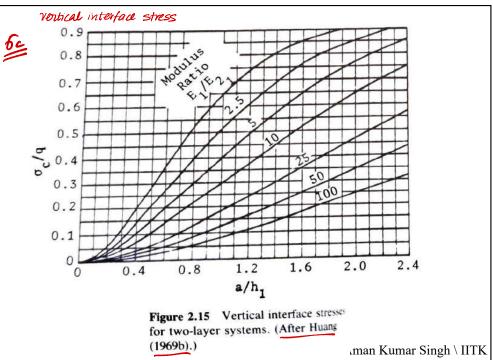

Foster and Ahlvin's Chart (1954)

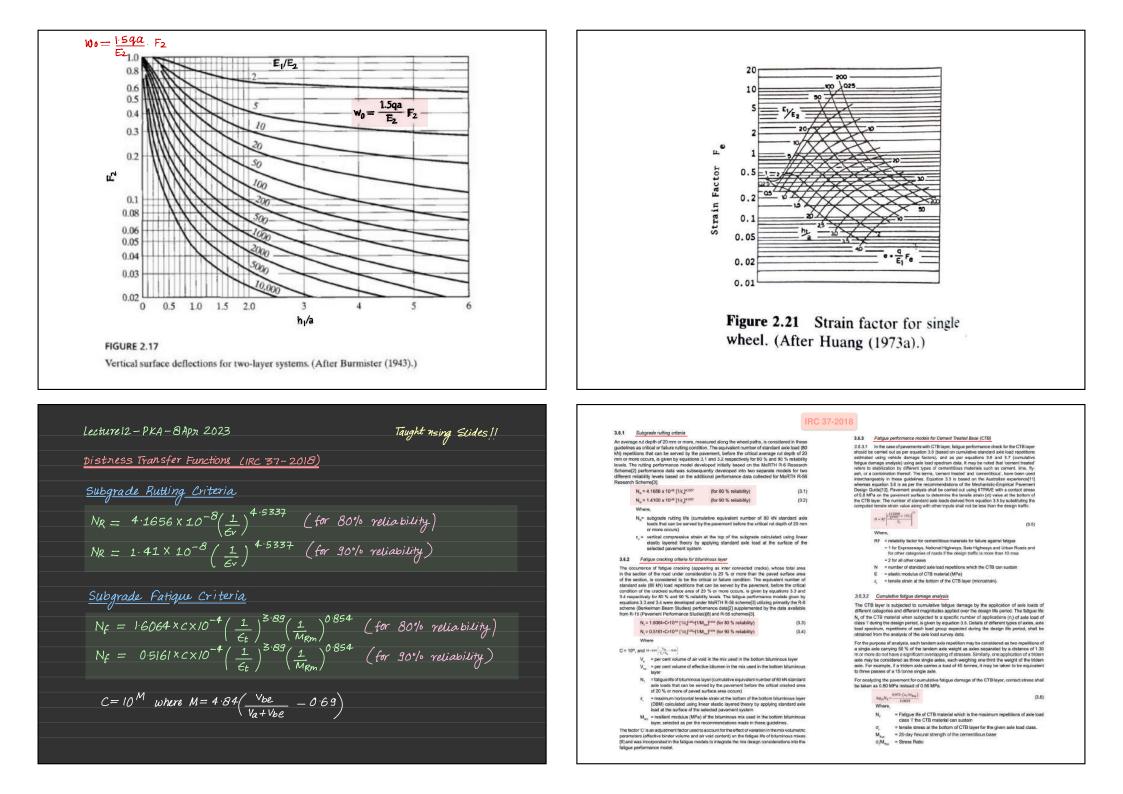

- Later modified by Ahlvin and VIEny (1962)

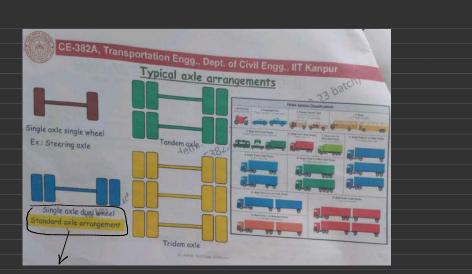

- Valid for $\mu = 0.5$ only -
- Charts 6z, 6r, 6t, Crz
- What is the significance $\mu = 0.5$ (poisson's ratio) It represents the limit condition for the chart Incompressible material Resilient modulus—Independent of confining pressure applied.
 - δ2, 6r, 6t, Crz tound → tz, Er, Et, deflection can be calculated.

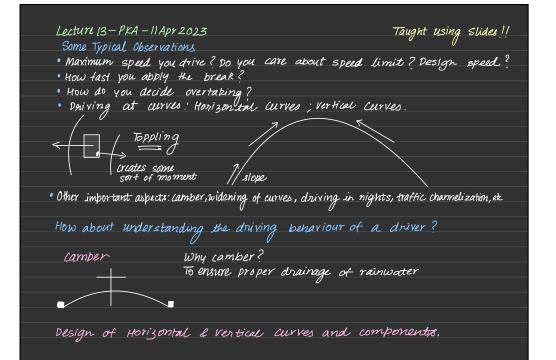

For
$$6t$$
, $kett \rightarrow r/a = 0$
 $\left[\frac{6t}{q} \times 100 = 0.1 \Rightarrow 6t = 0.345 \times 10^{-3} MPa\right]$
 $Right \rightarrow r/a = 4$
 $\left[\frac{6t}{q} \times 100 = \left(\frac{2}{3} - How\right) \text{ to find } \left(\frac{2}{3} - No\right) \text{ line for } \frac{r}{a} = 4 \right]$
For $6r_{2}$, $kett \rightarrow r/a = 0$
 $Right \rightarrow r/a = 4$
 $\left[\frac{6r_{2}}{q} \times 100 = 1.8 \Rightarrow cr_{2} = 6.21 \times 10^{-3} MPa\right]$
For ω (vertical deflection) $w = \frac{94}{E} \times F$
 $kett \rightarrow r/a = 0 \rightarrow F = 0.68 \rightarrow w_{1} = \frac{94}{E} F = 0.4318 \text{ mm}$
 $Right \rightarrow r/a = 4 \rightarrow F = 0.22 \rightarrow w_{2} = \frac{9a}{E} F = 0.01397 \text{ mm}$
 $Wartal = Wugt + Wnight = W_{1} + W_{2} = 0.4577 \text{ mm}$

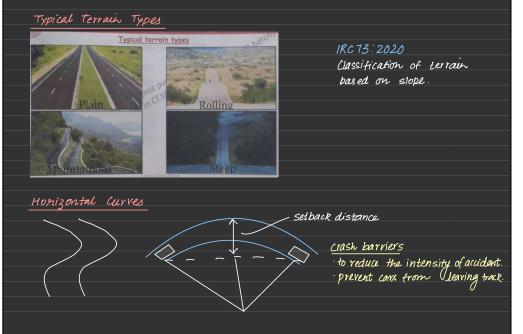


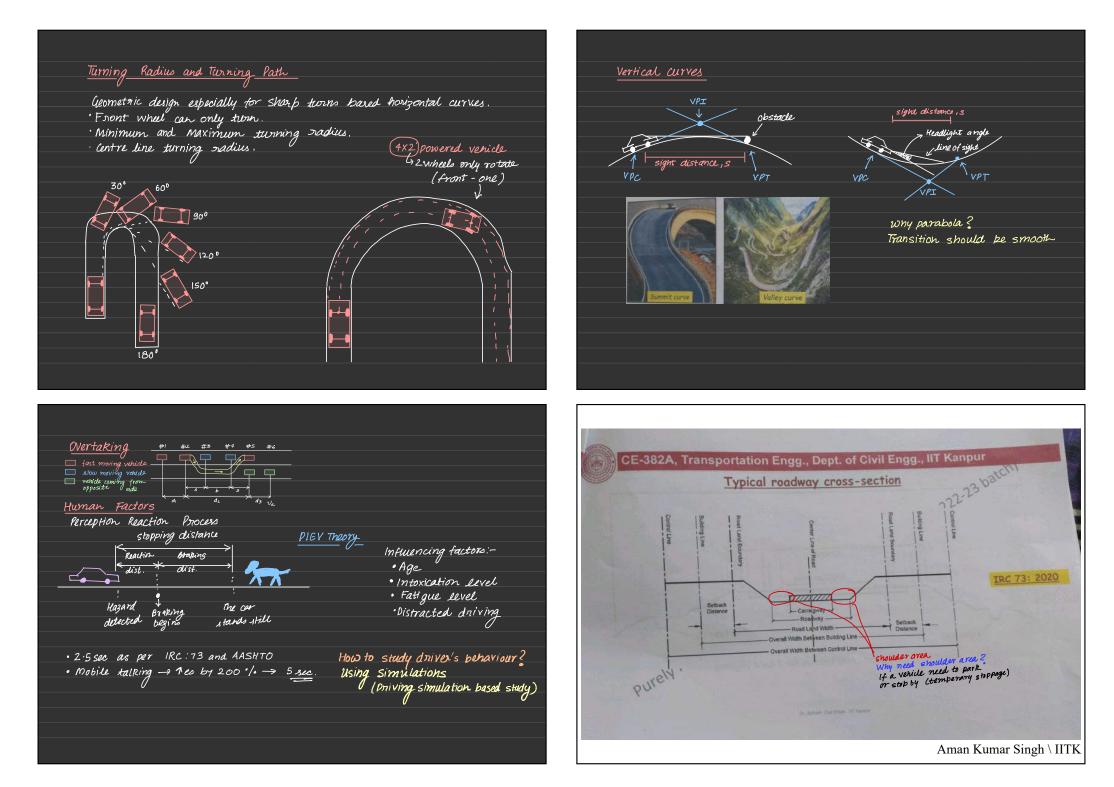


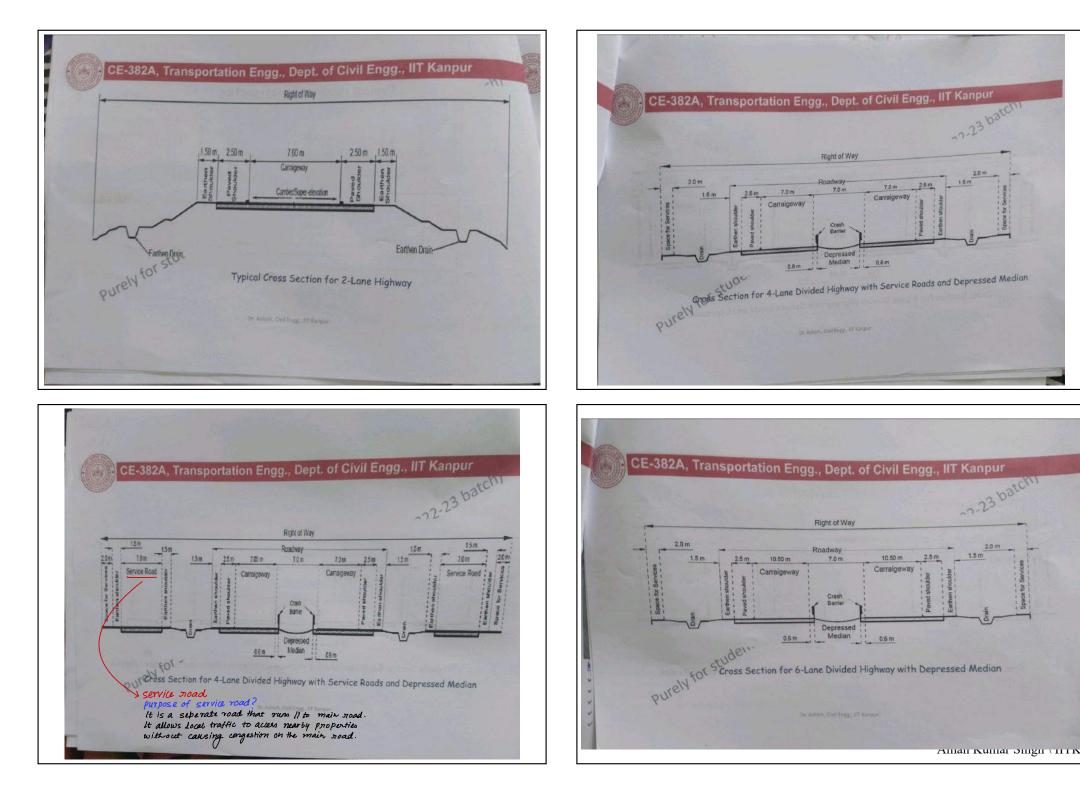


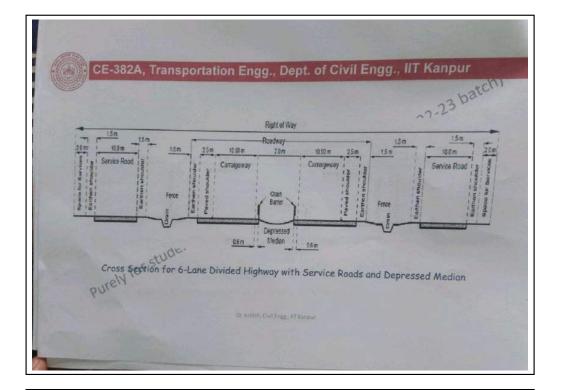

L	ayered Sys	stem		
			 E₁>E₂>E₃>····· usually. But maybe E₁<e<sub>2<e<sub>3 in some cases. The composite payements</e<sub></e<sub> 	ose are called
h ₁	Layer I	Ei, KI		
	Layer2	Ε2,μ2	<u>Assumptions:- • homogenous</u>	
hz	Layer 3	<u>Ε</u> 3,μ3	• weightless	
h4-	Layer4	E4, M4	·isotnopic	
			· elastic half-space	
$\overset{*}{\sim}$			· Compatibility blw Jayers	at interface
Bitum	inous layer.	— 3000 MPa		<u></u>)
w	мм ———	- Replaced by cemen	utitious material	1111
û	SB	> 10,000 MPa		
M	n n		compatibility blus two layers :	\checkmark
SW	pended		· Vertical stress	<u> </u>
			sheav stress	5'
			· vertical displacement	
•	Charts – a	essume perfect .	bonding blue two layers.	

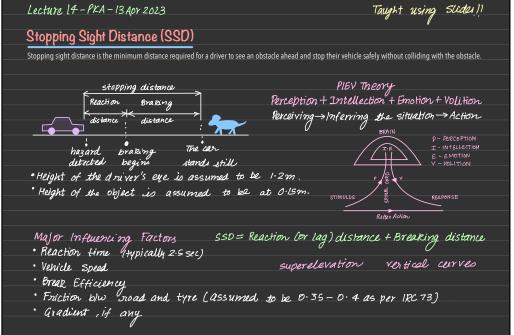


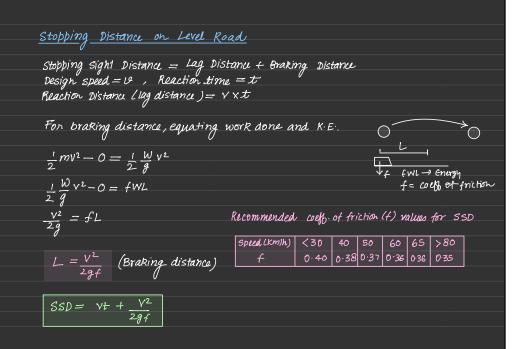


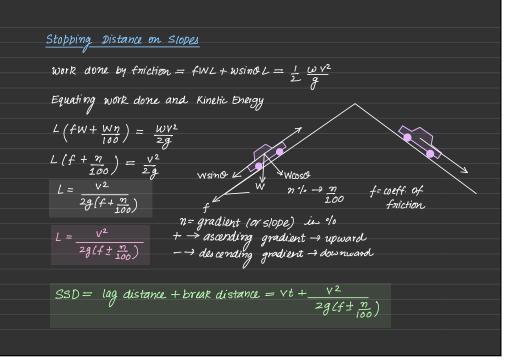


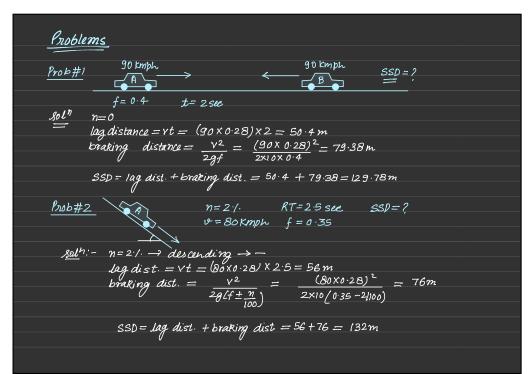

• All are converted to single axle duel wheel (standard axle arrangement)

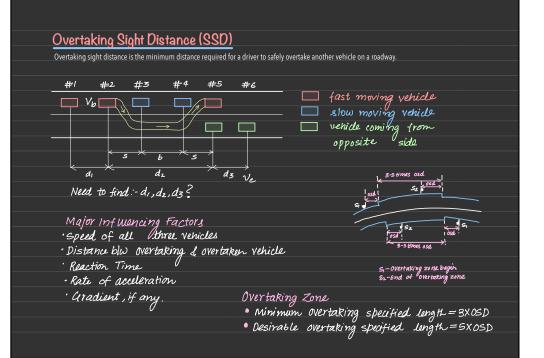

<u>IIT Pave - Pavemen</u>	t Design	Design a bitu	minous pavement w		ind sub-base layer	with following data for a deat
3 layers		 Unerrow CBR Britemenses to 90% refeatute 	of sobgrader 7% wer: NC+DBM (VG40): Ar y head	m. Most = 3000 MPa		GS8, 230 mm WMM: 250 mm OPM+9C: 130 mm
wmm	Barc	LI	3000	0.35		
C \\\\B	subbase	L2	196	0.40	480	
NA	subgrade	13	61	0.45		
standard Bilton a	xle load to tak	L	Type pr.	essure =	0.56MP	a
() 8·1	ton in Newton	υ	Loa			
4						
Analysis point						
Depth	Radial distar	re	310	mm	\searrow	
	0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		dard
/50	155					ance
630	0					those
630	165				*	re, . 2
fatique Nf - 131	K106	Vbe	= 3·/·	2 cal	wate	NA
Fatique N _f — 1311 Rutting N _R —	∧ Er	Va =	= 11.5./-		/	
	\ \					
0						

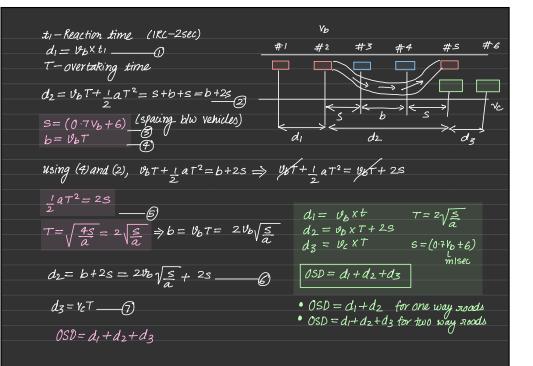












	_Vc-same ji	~ the beginning	2			
Prob	: Va=70Kmph	0 0		(In 1-	way d3=0)
	Vb=40 Kmph	one-way				
	a=0.99m/s²	t=2sec	OSD=?	14 1	nedian is ther	e,
SOLY					n also dz=C	
-	$d_1 = \vartheta_b t = (40 X d)$	$(28) \times 2 = 22^{-4}$	4 m		$OSP = d_1 + d_2$	
	S= 0.716+6=	0.7X /40X0.28) +	-6 = 13.84 m			
	$T = 2\sqrt{\frac{5}{2}} = 2\sqrt{\frac{13}{2}}$	$\frac{1}{64} = 7.48 \le$				
	Va Vo.	99				
	$d_2 = b + 2s = V_b T$	+2S= (40×0.	28)X7· 4 8 + 2X	13·84 <i>=</i> 1	111·46m	
	$d_3 = V_c T = (70 \times 0)$					
	$OSD = d_1 + d_2 + d_3 =$					

Superelevation

Superelevation is the banking or tilting of a road or highway's horizontal curve. It is designed to counteract the centrifugal force that pushes a vehicle outwards when it travels around a curve at high speeds. By angling the roadway slightly, superelevation helps keep the vehicle on the road, making it safer for drivers. In simpler terms, superelevation is the slope on a curve that helps you stay on the road when driving around a bend.

mv

mgcoso + mv2sino

mg

Frictional Colfs. Value

- · Typical suggested value 0-15
- · As per AASHTO code :
- = 0.19-0.0006Y; 30< V<80 Kmph
- = 0.24 0.0012V; V>80Kmph
- Imp factors affecting friction
- ·Tyre condition
- · Weather condition
- ·Road condition
- Key Design Parameters
- Radius of honizontal curve
- · Max/Min superelevation
- · Negotiating speed
- How to introduce superelevation · setback distance

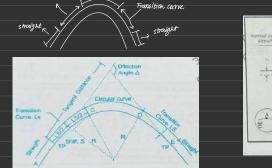
Lecture 15—PKA—19Apr 2023			N ² COSO
Superelevation			E T
$mgsin0 + f(mgcos0 + \frac{mv^2sin0}{R}) =$	R ^{mV²COSO}		$\rightarrow \frac{m\gamma^2}{R}$
$gsin\theta + fgcos\theta + \frac{fv^2}{R}sin\theta = \frac{v}{R}$	2 COSO- 9	ngsino	$mg\cos \theta + \frac{mv^2}{R}\sin \theta$
$g \tan \theta + fg + \frac{fv^2}{R} \frac{\tan \theta}{R} = \frac{v^2}{R}$		10	
	>=e frimgco	$1SO + \frac{mV^2}{R}sinO$	
$ge + fg + \frac{fv^2}{R}e = \frac{v^2}{R}$		R m	P = viry small $e = tan 0 \approx sin 0$
$\frac{V^2}{R} \left(l - fe \right) = g \left(e + f \right)$			$sin \mathcal{O} \approx tan \mathcal{O}$ for small \mathcal{O}
$\overline{\mathcal{R}}$			
$R = \frac{V^2(l-fe)}{\mathcal{G}(e+f)} \approx \frac{V^2}{g(e+f)}$	$R = V^2$		
$\overline{\mathcal{G}(e+f)}$ g(e+f)	91e+	· ()	
/			
e: elevation = tano			
f: weff. of lateral fric.	$\ell + f = \frac{V^2}{2}$	$e+f = V^2$	
	$\frac{e^{q}f}{gR}$	127R	
	V in mISEC	Vin Rm/h	

fs/mgcoso+mv2sino)

$maxima \pm f(maxima) + mx^2 cina) - mx^2 cinal$	my ² coso
$mgsin0 + f(mgos0 + \frac{mv^2}{R}sin0) = \frac{mv^2}{R}cos0$	
$gsin0 + fgcos0 + \frac{fv^2}{R}sin0 = \frac{v^2}{R}cos0$	$\frac{mv^2}{R}$
$g \tan \theta + fg + \frac{fv^2}{R} \frac{\tan \theta}{dr} = \frac{v^2}{R}$	$mg\cos O + \frac{mv^2}{R}sinO$
$ge + fg + \frac{fV^2}{R}e = \frac{V^2}{R}$	
$\frac{V^2}{R}\left(l-fe\right) = g\left(e+f\right) \qquad \qquad$	mg Q = very small
$R = \frac{V^2(l-fe)}{V^2} \approx \frac{V^2}{V^2} \int e \to 0 \text{ (very small)}$	e = tan0 ≈ sino sino ≈ tano
$g(e+f) \qquad g(e+f) \qquad f_{e\to 0} \qquad f_{f_{e\to 0}}$	cosØ≈1
$\mathcal{K} = \frac{V^2}{g(e+f)}$	

Suggested lateral frictional coefficient value
· Typical suggested value: 0.15
• As per AASHTO code = $0.19 - 0.0006 \vee$; $30 \langle \vee \langle 80 \rangle$
= 0.24 - 0.0012V V >80Kmph
Suggested, superelevation values on her IRC. 73
Suggested superelevation values as per IRC 73 'For plain and rolling terrain: max 7%
· For hilly and steep slope terrain: max 10%
' Minimum Value : camper of the road
Speed for superelevation design
·Max superelevation may convenient for vehicle moving close to design speed

- but not for slow moving vehicle.
- As a compromise, and practical consideration, superclevation is aimed to counteract centrifugal torce developed by 75°). of the design speed (by neglecting lateral friction)

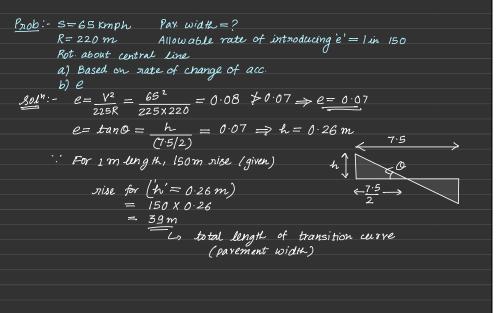

e=	(0.75V) ² -	= V ²	Yis in K	mph
	127R	225R		

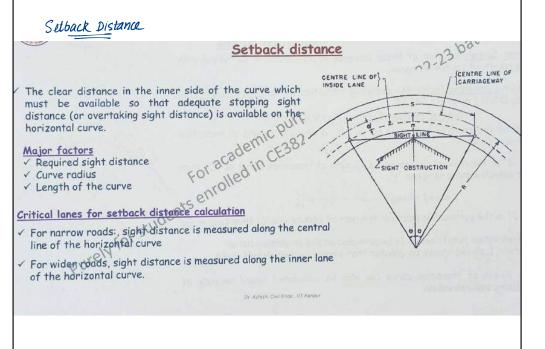
Steps for superelevation design
· Cal. 75% of the design speed.
· If eas < emax; ecal will be provided.
· It leas > Emax; Reep Emax = 0.07 (say for plain and rolling terrain)
and check for t value at full design speed
$f = V^2 - 0.07$
$\int \frac{1}{l^2 7 R} = 0.07$
· It f from above step (0.15; provided e is safe. If not, restriction
on speed needs to be made as per:
$e+f = 0.07 + 0.15 = 0.22 = V^2$
$\frac{127R}{127R}$
Prob: R=500m e=?
\longrightarrow $V = 100 \text{ Kmph}$ $f = ?$
$\frac{g_{0}l^{\gamma}}{2} = \frac{V^{2}}{2050} = \frac{100^{2}}{2000} = 0.09$
$\frac{1}{225R} = \frac{1}{225} \frac$
$f = \frac{\sqrt{2}}{\sqrt{2}} - 0.07 = \frac{100^2}{\sqrt{2}} - 0.07 = 0.0875$
127R 127X500

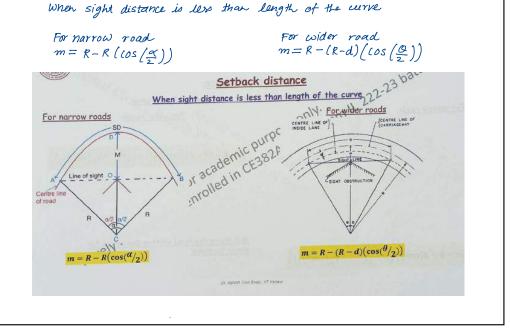
Design speed in kmph for various terrains Chividen Naminaeur Reining was stated by the state	$\ell + f = \frac{V^2}{12.7R}$ $R_{ruling} = \frac{V_{ruli}^2}{12.7(e^{-1})}$	$\frac{n_g}{k_f} \qquad \qquad$	
Road classification Design speed in kmph for various terrains Plain Rolling Moutainous Step National & State Highways 100 80 806 65 90 40 <th>Table 4.8 D</th> <th></th> <th>Table 4.10 Minimum radii of horizontal curves for different terrain condition Montaneou terrain Seep terrain</th>	Table 4.8 D		Table 4.10 Minimum radii of horizontal curves for different terrain condition Montaneou terrain Seep terrain
National & State Highways 100 80 40 55 50 40 40 30 20 20 40 50 23 23 21 23 23 21 23 13 23 14 15 Major District Roads 80 65 50 40 30 30 20 20 42 14 20 44 20 42 14 20 42 14 20 44 15 25 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 42 14 20 14 20 14 20 14 20 42 14	Ruli	Plain Rolling Mountainous Steep ng Min. Ruling Min. Ruling Min. Ruling Min.	Classified Plant turnin Rolling ummn Ante tot Shee Broked Plant et al. of reals Rolling Absolate/Juling Absolate Planted by seven Rolling Absolate/Juling Absolate Planted Planted Planted Planted Planted Main Mini Man
Vinage Roles Khanna and Justo [Highway Engineering]	Major District Roads 80 Other District Roads 65	60 60 60 60 60 20 65 65 50 40 30 30 20 50 50 40 30 25 25 20 50 50 40 30 25 25 20	NOR 230 155 190 40 20 20 23 23 14 4 5 500 90 60 50 20 13 23 10 14 5 90 60 60 30 20 13 23 10 14 2 100 135 90 60 60 43 20 14 23 15 20 14 23 15 20 14 23 15 20 14 23 15 20 14 23 15 20 14 23 15 20 14 23 15 20 14 23 14 24 <th2< td=""></th2<>
	Village Roads 50	Khanna and Justo	[Highway Engineering]

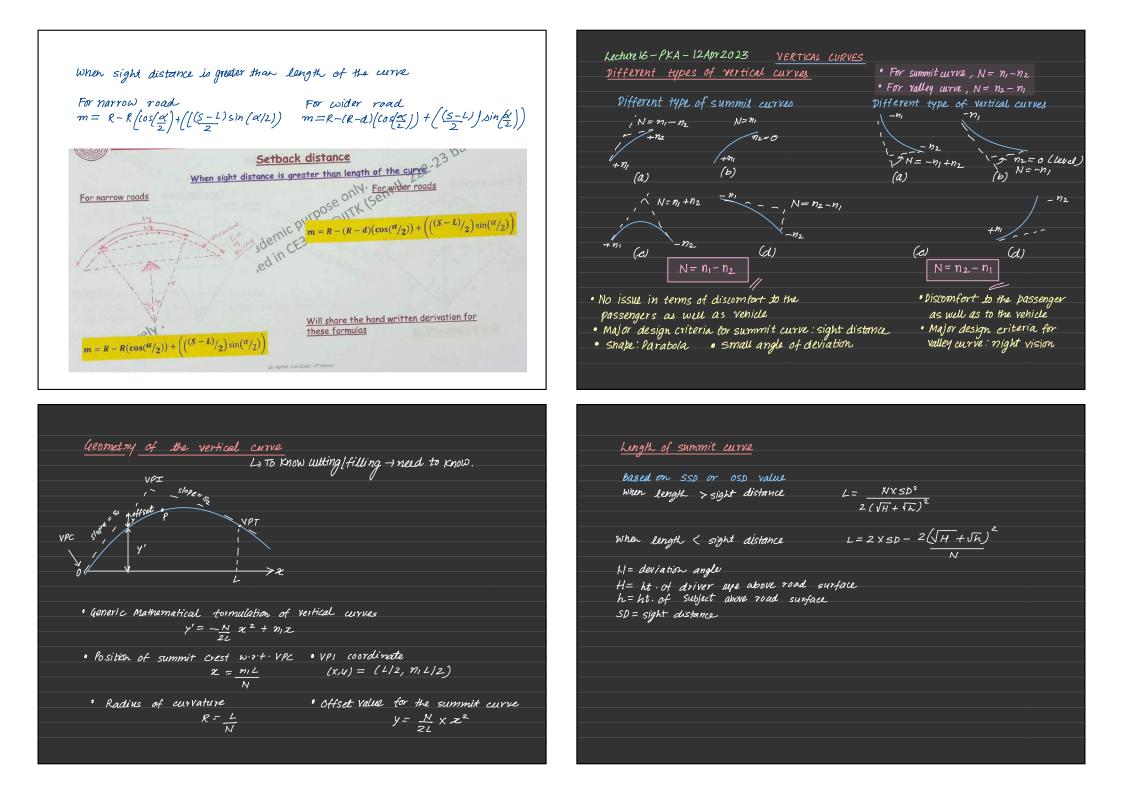
	Transition Curres
	·Fonm: Spiral: because of linear increases in its curvature (1/radius)
	with the length of transition curve
	· Major controlling factor for designing transition curve: rate of change of
	acc: 0.5-0.8 m/s2 alc IRC73
	Rate of change of acc = <u>80</u> ; V is in Kmph
	75 + V
	· Acc at the start of transition curve = 0 & Acc. at the end of
	$transition curve = V^2/R$
	" If 'I' is the rate of change of acc; length, of transition curve 'L'
	then for moving vehicle at speed v
	$\frac{\sqrt{2}}{2} - 0$ 3
	Rate of change in acc. = $\frac{\overline{R} - 0}{R} = \frac{v^3}{\sqrt{n}}$
	· If J " is the permissible limit for the rate of change in acc, then
	$\frac{L_{min}}{R_{T}*} = \frac{\nu^{3}}{R_{T}*}$
	Kʃ*
	* superelevation runoff needs to be provided on the transition curve;
	therefore, L should always be greater than superelevation runoff and Lmin.
3]	* The length of transition curve can also be calculated based on rate
	of introducing super devation.

- How to introduce superelevation at horizontal curve? With transition curve: Gradually introduced over the transition curve and remains constant over the circular curve.
- · Without transition curve · 2/3rd e is provided at the beginning of circular curve and 1/3rde is gradually attended till the half part of the circular curve.
- · Natural path of driver: follow transition curve Rotation about the outer edge Rotation about the inside edge Transition curve




circular unve


urve at full Profile of ninoff Profile of Profile of Chakroborty and Das [Principles of Transpiration Engineering]


Rotation about the central line

$$\begin{array}{c} \underline{P_{10}b}: & n_{1} = 5!. & t = 2:5sec & design speed = 80 \, \text{Kmph.} & \text{H} = 1.2 & \text{L} = ?\\ & n_{2} = -5!. & f = 0.35 & ignore gradient effects for ssp. & h = 0.15 & \text{L} = ?\\ \hline \underline{Sol}^{n} & SSD = V6 + \frac{V^{2}}{2gf} = (80 \times 0.28) \times 2:5 + (\frac{80 \times 0.28}{20 \times 0.35})^{2} = 56 + 71.68 = 127.68 \, \text{m} \\ & \underline{L = 0.03 - (-0.05)} = 0.08 \\ & \underline{Lungh} & of summit curve & (127.68)^{2} \\ & \underline{L = \frac{N \times SSD^{2}}{2(\sqrt{H} + \sqrt{h})^{2}} = \frac{0.08 \times (127.68)^{2}}{2(\sqrt{r^{2}} + \sqrt{015})^{2}} = 2.96 \cdot 6 \, \text{m} & (159) \\ \hline \underline{P_{10}b}: & n_{1} = 1/100 \quad OSD = 470 \, \text{m} & design speed = 80 \, \text{Kmpl.} \\ & \underline{M_{2} = -1/120} & H = 1 \quad h = 2 \quad L = ? \\ \hline \underline{Sol}^{h} & N = n_{1} - n_{2} = \frac{1}{100} - (-\frac{1}{120}) = 0.0183 \\ & L = 2 \times SD - 2 \left((\sqrt{H} + \sqrt{h})^{2} = 303 \, \text{m} \right) & \underline{L = 2 \times SD - 2 \left((\sqrt{H} + \sqrt{h})^{2} = 303 \, \text{m} \right)} \end{array}$$

Length of valley curve

$$case T: Allowable rate of change is acceleration: 0.6 m/s^3$$

 $case T: Headlight sight distance: Typically more than case T.
Based on headlight sight distance
when length \geq sight distance $L = \frac{NXSD^2}{2(h^1+SDXTang)}$
when length \leq sight distance $L = 2S - \frac{2(h^1+SDXTang)}{N}$
Based on comfort condition N
 $L = 2X \left(\frac{NV^3}{T}\right)^{VZ}$ V is in misse $sD = sight distance$
 $N = deviation angle $h' = ht \cdot ot + headlight$
 $T = rate of change in acceleration (recommended as 0.6 m/s^3)$
 $a = headlight beam angle$$$

$$\frac{\beta_{nob}}{m_{1}}: \begin{array}{l} n_{1} = -1/25 \\ n_{2} = 1/30 \\ f = 0.35 \end{array} \begin{array}{l} v = 80 \text{ kmph} \\ h' = 0.75 \\ cmmma = 1^{\circ} \end{array} \begin{array}{l} b) \text{ head } \text{light sight cond}^{n} \\ f = 0.35 \\ h' = 0.75 \\ cmmma = 1^{\circ} \end{array} \begin{array}{l} \text{ignore grad. effect for ssp.} \end{array}$$

$$\frac{80^{1/2}}{n} \\ N = n_{2} - n_{1} = \frac{1}{30} - \left(-\frac{1}{25}\right) = 0.073 \\ a) L = \left(\frac{N \sqrt{3}}{5}\right)^{1/2} \times 2 = 2 \times \left(\frac{\left(0.073 \times (80 \times 0.28)^{3}\right)^{1/2}}{0.6}\right)^{1/2} = 74 \cdot 13m \\ b) \text{ sd} = \frac{V^{2}}{294} + V^{2} = 71.68 + 56 = 127.68 \\ L = \frac{0.073 \times SD^{2}}{2(h^{1} + \text{sptanec})} = 199.76 \text{ m} \approx 200 \text{ m} \\ \end{array}$$

Aman Kumar Singh $\ IITK$