

 A is the single single

 $\frac{dM}{dt} = \frac{\partial N_R}{\partial t} + \lim_{\Delta t \to 0} \frac{N_{\pi}}{t} \Big|_{\text{tot-} \Delta t} - \lim_{\Delta t \to 0} \frac{N_T \Big|_{\text{tot-} \Delta t}}{t}$ $0 = \frac{\partial N_R}{\partial t} + \lim_{\Delta t \to 0} \frac{N_{\frac{H}{H}}}{t} = \lim_{\Delta t \to 0} \frac{N_{\frac{L}{H}}}{t}$ $N_{\overline{m}} = \int \frac{\rho dx}{\int_{\phi} \phi dx}$ $\frac{\partial \Psi}{\partial x} = \frac{\rho}{dx}$ $= P \Delta x_{\underline{\pi}}$ $\Delta t \rightarrow small$ = ρ $\omega \Delta t$ $\frac{Q_{in}}{Q}$ Q_{out} $-R_N$ \overline{z} $\frac{1}{\frac{x+bx}{x+bx}}$ $t = t$ Δx Q out R_{π} R_{π} R_{π} $N \rightarrow$ rehicles in the system $t_0 + \Delta t$ Pout Rate of change of vehicles in the system $=\frac{dN}{dt}=\frac{d}{\Delta t}\lim_{\rho\to 0} N\Big|_{\tau\to t\pm 0} - N\Big|_{\tau\to 0}$ $\overline{\Delta t}$ $N|_{to+4t} = N_{\pi} + N_{\pi}$ $\left|_{to+4t} \right|$ $N/t_{\text{total}} = N_R - N_T + N_{\text{max}}t_{\text{total}}$

 $N_{\pi} = N_{R} - N_{\pi}$ $\frac{dN}{dt} = \lim_{\Delta t \to 0} \left[\frac{N_R - N_T + N_{\frac{m}{2}}}{\Delta t} \right]$ $\frac{2\nu}{\Delta t \rightarrow 0}$
= $\lim_{\Delta t \rightarrow 0}$ $\frac{Nk}{\Delta t}$ $\frac{1}{\Delta t}$ $\frac{N_1}{\Delta t}$ $\frac{N_2}{\Delta t}$ $N\pi$ = \int $e^{d}x$ to θ + $\frac{dN}{dt} = \frac{dNg}{dt} + \frac{lim}{dt}N\frac{N\pi}{t^{t+dt}} - \frac{lim}{t^{t+dt}}\frac{N\pi}{t^{t}}$ $0 = \frac{\partial \int \rho dx}{\partial t} + \lim_{\Delta t \to 0} \frac{N \pi}{\Delta t}$ $N_R = \int e dx$ \rightarrow $\lim_{\Delta t \to 0}$ $\frac{N_E / t_{\Delta t}}{L}$ $\lim_{\Delta t \to 0} \frac{N_{\pi}}{\Delta t}$ $\lim_{\Delta t \to 0} \frac{N_{\pi}}{\Delta t}$ $\lim_{\Delta t \to 0} \frac{N_{\pi}}{\Delta t} = \int \rho dx$ $\lim_{\Delta t \to 0} \frac{L}{\Delta t} = \int \rho dx$ $(t_0 + \Delta t)$ $\lim_{\Delta t \to 0} \frac{L}{\Delta t} = \int \rho dx$ $\lim_{\Delta t \to 0} \frac{L}{\Delta t} = \int \rho dx$ $\lim_{\Delta t \to 0} \frac{L}{\Delta t} = \int \rho dx$ $\lim_{\Delta t \to$ $\Delta x = \mathcal{P}\Delta b$ ρ = constant $N_{\text{III}}/_{\text{tot+4+}} = \rho v_{4}$ $\lim_{\Delta t \to 0} \frac{N_{\pi} \ln |t_{0+\Delta t}|}{\Delta t} = \frac{\rho V \Delta t}{\Delta t} = \rho V \longrightarrow \text{Region.}$

 A is the single single

 A is the single $v = a\left(1 - \left(\frac{S}{10}\right)^2\right)$ $=$ $a (1 - (0.5)^2)$ = $a (1 - (0.5)^2)$
= $0.75a$ $v > v_e$ $devired$ $gap =$ tom $B = \left(1 - \left(\frac{s}{s}\right)^2\right) = a\left(1 - \left(\frac{16}{s}\right)^2\right)$
= a (1-4)
= -3a $(\frac{16}{5})^2$ $= a(1 - 4)$ $=-3a$ Incomplete ^I Emerging ② Normal $S = S_0 + 9 + 969$
2 Vab equilibrium < dynamic
term term 10 (Inconstitute)

y <mark><<se</mark>
u<< r $\frac{d\theta_i}{dt} = f(s_i\theta_i\theta_e)$ $\frac{dV_i}{dt} = f(s_i, v_i, v_e)$
 $\frac{dV_i}{dt} = V_e + U_e$
 $\frac{dV_i}{dt} = \frac{dV_e}{dt} + \frac{du}{dt}$
 $\frac{dV_i}{dt} = \frac{dV_e}{dt}$
 $\begin{aligned} \n\mathcal{V}_i &= \mathcal{V}_e + \mathcal{U} \\ \n\frac{d\mathcal{V}_i}{dt} &= \frac{d\mathcal{V}_e^T}{dt} + \frac{d\mathcal{U}}{dt} \n\end{aligned}$ $rac{d\theta_i}{dt} = \frac{d\theta_i}{dt}$ = $rac{\partial f}{\partial s}\Big|_{e}$ (s-se) $+\frac{\partial f}{\partial \theta}\Big|_{e}$ (v-ve) $\frac{du}{dt} = \frac{\partial f}{\partial s} y + \frac{\partial f}{\partial v} u$ \bullet $\frac{dy}{dt} = -u$ (1) $\frac{dy}{dt} = -\mu$
 $\frac{du}{dx} = \frac{\partial f}{\partial s}y + \frac{\partial f}{\partial r}u$ 2 $\frac{du}{dt} = f_s y + f v u$ (3) \searrow Diff. one more time $\frac{d^2y}{dt^2} = -\frac{dy}{dt} = -(\frac{f}{f}y + f\nu u)$ $\frac{d^2y}{dt^2} = -fsy - f\nu\omega \qquad \qquad \rightarrow \frac{-dy}{dt}$ $\frac{d^2y}{dt^2} = -fsy - f\nu\left(-\frac{dy}{dt}\right)$ $\frac{d^2y}{dt^2} = -\frac{f}{f}y + \frac{dy}{dt}$ $\frac{d^2y}{dt^2} = -igy + fg\frac{dy}{dt}$
 $\frac{d^2y}{dt^2} - f y \frac{dy}{dt} + fgy = 0$ $\frac{d^2y}{dt^2} - f v \frac{dy}{dt} + f s y = 0$ $\int \frac{dy}{dt} + f_s y = 0$

At \leftarrow Substitute \leftarrow Substitute y $y=ce^{\lambda t}$ Biltr inverted form $\frac{dy}{dt}$ = $=$ $c \lambda e^{\lambda t}$ 33 \rightarrow substitute \rightarrow $\frac{d^2y}{dt^2} = c\lambda^2 e^{\lambda t}$ $c d^2 e^{\lambda t} - f \nu \left(c d e^{\lambda t} \right) + f_3 \left(c e^{\lambda t} \right) = 0$ $ce^{\lambda t} (\lambda^2 - \lambda f_0 + f_5) = 0$ $d^2-2f_{1}\cdot f_{1} = 0$ - > Characteristic Equation. $d_{1,2} = f v \pm \sqrt{f v^2 - 4f_S}$ z general solution of this equation (Linear ODE) $y(x) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ Case 1:Real Roots $31,32 < 0 \rightarrow$ Model Locally stable $\begin{pmatrix} \lambda_1 & \lambda_2 & < 0 & \rightarrow \end{pmatrix}$ Model Local
(BCO2 dy v with time) $\frac{f\beta^2 - f_s > c}{4}$ f_{ν} < 0 f_{s} > 0

Aman Kumar Singh \ IITK