

1) Time Headappar : Time difference between successive vehicles	
at a particular pointX	3 Distance Headquare: Distance between front bumber to front
$h = t_n - t_{n-1}$	bumber of successive vehicle at a instant of time.
	0
Follower Leader tn-1	$S = \chi_{n} - \chi_{n}$
Total Observation Period = ΔT	
$h_{21} = t_2 - t_1$	Total no of vchildes = DN d
$h_{23} = t_2 - t_3$	length of the road = SL
No. of vehicles crossing $XX = \Delta \eta$	Average Distance headaway $\overline{S} = \underline{1} \leq s_i$
Average time head away, $t_{v} = \frac{1}{2} \overset{n}{>} hi$	O AN
$\overline{h} = \Delta T$ $\Delta n i = 1$	$\Sigma S_{1} = S_{21} + S_{32}$
Δη	$\sum s_i = \Delta L$
$\overline{h} = \underline{l}$ $\overline{q} = \underline{h} \overline{q}$	$\overline{S} = \Delta L \qquad \rho = \Delta N$
a marroscopic	
microscopic variable	$\overline{S} = \underline{1}$
	P
2) Time gap : Time Difference between back of front vehicle	microscopic variable Variable
to front of following vehicle. X X	
	4 Distance Gap: distance between back bumber of front vehicle to
time gap tg = tn - tn - 1 th = t + t + t + t + t + t + t + t + t + t	front bumber of following vehicle.
	$d = \chi_{n-1} - \chi_n - L_{n-1}$
hg = tn - tn - 1 - Ln - 1	
U Un-1	macro
$Ln \rightarrow length of vehicle n$	Q h] space fixed
$u_n \rightarrow velocity of vehicle n$	p tg
Eulerian & Lagrangian)	$b \overline{h} = \frac{1}{2}$ is ζ time fixed
system ()	d)
pata collection	$\overline{s} = \underline{1}$
	Ĵ

521

 $\frac{dN^{2}}{\Delta t} = \frac{\partial N_{R}}{\partial t} + \lim_{\Delta t \to 0} \frac{N_{III}}{\Delta t} \Big|_{to+\Delta t} - \lim_{\Delta t \to 0} \frac{N_{I}}{\Delta t} \Big|_{to+\Delta t}$ $O = \frac{\partial N_R}{\partial t} + \lim_{\Delta t \to 0} \frac{N_{III}/t_0 + \Delta t}{\Delta t} - \lim_{\Delta t \to 0} \frac{N_I/t_0 + \Delta t}{\Delta t}$ $N_{III} = \int \rho dx \Big|_{to + \Delta t}$ $R_{egion III}$ $\rightarrow \psi = f \int dx$ $= \mathcal{P} \Delta \times_{\underline{III}}$ $\Delta t \rightarrow small = \mathcal{P} \lor \Delta t$ RN A Qin Qout *π* + 6× Ax Qout RI RI RI N → rehicles in the system to + Dt Pout Rate of change of vehicles in the system $= \frac{dN}{dt} = \int_{\Delta t \to 0}^{\Delta t} N \Big|_{to+\delta t} - N \Big|_{to}$ $N/_{to+\delta t} = N_{II} + N_{II} (to+\delta t)$ $N/_{to+\Delta t} = N_R - N_I + N_{II}/_{to+\Delta t}$

			_		
	Finst onder	model	1 LWR		Q = P Q
	Q = PV	((00)		0P + 20 -0
	dg dQ	=0			05 22
	dt Jz	(
	v = f(p)		(1) stat	le and unsta	ble region
			2 pro	le transition	ν ν
			3 capa	with drob	010
			0-4		
					و ا
Mi	eroscopic M	lodel			
	<u> </u>				i→follower
					i-1→ Leader
mac	roscopic - colle	ction of	venicies	position a	t speed of
Mic	roscopic — dri	ver - vehic	e unit	16 tollowe	r tollower
0	$DE: dx_i = b_i$	0	$\frac{10}{1} = f(2)$	i, zi-1, U	i, o_{i-1}
anad	at at	d	t	Position of	T chud of
speen	_i-vehide ind	dex d	icon	leader	leader
π	NO type of mode	el :-	Lonaitudina	I dynamics.	-> we are doing
Ο	Car Following -	- 1000	lerate, do-a	ccelerate)	this only !
V @	lana ahavai	(4000	Land to and	ther laws	
A.C	une changing	- Lorie	Land to and	the lane)	
-			lateral dy	namics	
out	but				
_	_			1	
osition	all	speed	all	acch	all
	vehicles		venicles		vehicles
	time	· -	time		time

IDM (Intelligent Driver Mod	el)
$\dot{v} = \dot{a} \left(1 - \left(\frac{\vartheta}{v_o} \right)^{\delta} - \left(\frac{\varsigma^{1}}{\varsigma} \right)^{2} \right)$	
V = current speed	s'= desired gap
bo = desired speed	S=actual gap
a = maximum acceleration	S= model parameter
$a\left(1-\left(\frac{\omega}{\omega_{o}}\right)^{S}\right)$	$-a\left(\frac{s'}{s}\right)^2$
attractive part	repulsive part
accelerate desired	decelerate
s'= so + 197 + <u>19 а19</u> 2 √аь mininuum gap (stand*till cu	$\Delta U = U - U_{g}$ $\downarrow \qquad \qquad$
$\begin{array}{ccc} empty \ road \qquad b=0 \qquad s \rightarrow \\ \psi = a \left(1 - \left(\frac{b}{10}\right)^{\delta} - \left(\frac{s}{10}\right)^{2}\right) \end{array}$	00 S=actual gap S-300
$\dot{v} = a \left(1 - \left(\frac{c_{\theta}}{v_{\theta}} \right)^{\delta} \right) = For$	Empty Road
$\dot{b} = a \left(1 - \left(\frac{o}{b} \right) \right)$	
$\vec{v} = a$ $\vec{v} = a$	
Simple, Accident Free Mode and scientists of autonomous	l ⇒)That's why all researchers rehicles use this modul for test.

Case - 3: 19 = 60 km/	<i>w</i>
$y_a = 60 \text{ km}$	bh
$\nabla = a / I$	$-\left(\frac{\delta 0}{60}\right)$
<u> </u>	
19=0	
Steadu state ' Homes	and the state of the second states
Sicady sidic Thomog	chous and Equilibrium State
V= 190	mean steady state
	non story state
S-> constant	, <i>Q</i> < <i>Q</i>
$S' = S_0 + UT + UAU$	$\mathcal{Y} \rightarrow \mathcal{Y}_{p}$
2/Jak	50=0-00
K A	La mantionita
0	\
$S' = S_0 + BT$	Assume $19 \rightarrow 0$
in a factor	118 15 (21)2)
v = a (1 - 1)	$\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)$
L L L L L L L L L L L L L L L L L L L	
0	Annual ten de la contrata
	Assuming it zero [0].
(ase-1: 0<	190 -> Steady state F
dagi	S'=Sm
Clesi	driver
acti	nal gap=S=10m want to accelerate
24 =	$a/(-(s')^2)$ U(V)
	$\left(\overline{s}\right)$
01-	
53	- So + UT
	equili prium, term.
	- and the second s

 $v = a \left(I - \left(\frac{5}{10} \right)^2 \right)$ $= a (1 - (0.5)^2)$ = 0.75a 127 Ve desired gap = 10m actual gab = sm $U = \left(I - \left(\frac{s!}{s}\right)^2\right) = A \left(I - \left(\frac{t0}{s}\right)^2\right)$ $= a \left(1 - 4 \right)$ = -3aIncomplete () Emerging 2 Normal $S = S_0 + \frac{1}{9} + \frac{1}{2\sqrt{ab}}$ equilibrium < dynamic term term

6 = 1 - S	
$r_1 = f(1-f)$	
$r_2 = f^2(1-p)$	Derived the model
$V_3 = P^2 (1 - P)$	now, evaluate the system.
i	What to do?
i N (r - 2	Need of some variables :-
$l_N = g^{-}(1-P)$	(1) waiting length
	2 total no. of veh. in the
(1) Waiting Time	system
(2) Total no. of vehicle in th	e system.
1) Expected total number	of replice in the system
X -> Ku ns.or un	ר ביואסיטיוון אינט.
$E(x) = \geq x i f i'$	
$\chi_{=0} \rightarrow l = 0.25$	<u> </u>
$\chi_{=1} \rightarrow \ell = 0.75$	- (
$\chi_{=2} \rightarrow P = 0.2$)
70	
$L_{s} = 0R_{0} + 1R_{1} + 2R_{2}$	$r_1 + 3P_3 + \cdots + r_n$
Expected number	of reh. in the system.
$L_{s} = p' + 2p_{2} + 3p_{3} + \cdot$	
$= g f_0 + 2 g^2 f_0 + 3 g^3$	Po+····
$= g P_0 (1 + 2g + 3g^2)$	·+····)
= flo Žig ⁱ⁻¹	
1=1	
= spo <u>= d</u> (p ⁱ)	⇒ sPo d (Epi)
dg	d g

- Expected Number of vehicles in the system
7 Number of vehicles
$L_{s} = E[x] 0$
$= 0l^{\circ} + 1l^{\circ} + 2l^{\circ} + 3l^{\circ} + \cdots$
$= p^{1} + 2p^{2} + 3p^{3} + \cdots + p^{n}$
$= g P_0 + 2 g^2 P_0 + 3 g^3 P_0 + \cdots$
$= gP_0 [1+2g+3g^2+\cdots+1]$
= glo Zig ^{r-1}
$= \mathcal{F}_{0}^{k} \sum_{\substack{d \in \mathcal{F}_{0}}} \frac{d}{d\mathcal{F}_{0}}$
$= g \mathcal{R} \stackrel{d}{=} (\Sigma g^{i}) \qquad \qquad X = 1 + 2g + 3g^{2} + \cdots $
$f x = p + 2p^2 + 3p^7 + \cdots 2$
$= g P_0 \frac{d}{dr_0} \left(\frac{1}{1 - g} \right) \qquad $
$= gP_0 \cdot \frac{1}{(1-P)^2} \leftarrow P_0 = 1-P$
lut L
$- \rho(1-\rho)$
$\frac{1}{\left(1-P\right)^2}$
$= S = \lambda H = A$
(1-3) $(1-3/H)$ $H-3$
$L_s = \underline{\lambda}$
н-д

Ws = <u>N</u> Traffic engineers will design
$NH - \lambda$ $\Omega(\Lambda)$ — trattic not effective
$w_s \leqslant (\Omega)$ $\Omega(\psi) = \text{tratfic effective}$
$\frac{N}{M}$ $\leq \Sigma$
NR-A
$N \leq \mathcal{V}(NH-3)$
N S NH- DA
N- NNK -N
N \$ N
(nH-1)
N> <u>n</u> , Take minimum
$N = \left(\begin{array}{c} QA \\ QH \end{array} \right)$ (hoose where side 1)
- length
N = number of toll booths areas
$X_{L}(V) = \text{spill over}$
L= Vehicles in the system (only one lane)
r = r + p + r + r + r
$-(-1) + 3(1-p) + p^{-}(1-p) + \cdots + p^{-}(1-p)$
$= 1 - y + y - y^{-} + y^{-} - y^{-} + \cdots + y^{-} - y^{-}$
= 1-pt small lane probability.
$r_{L} = r - g$ P_{T}
(l + l) N
$r_{\pm} = (1 - \rho^{\pm}) \longrightarrow \text{ tack lane } L \text{ vehicle.}$
r(at least one lone exceeding L vehicles)
$= 1 - r_T$
= (- (1-y))