

MAP SCALE: - A scale is the ratio of the distance between any

two pts. on a map to the actual distance between the corresponding pts. on the ground.

Icm is 4Km

1: 1000 ⇒ larger scale

1: 25000 ⇒ smaller scale \implies features will be smaller.

- Map scale can be expressed in any of the three ways:-
- By a statement
- By a Numerical Fraction 1:250,000
- By Graphical section or linear scale

Approximate Measurements on the Earth.

- 01 pegree of arc = 110 km
- 0 1 Minute of arc = 1 mile or 1.6 km
- o 1 second of arc = 30 metres

Introduction to GIS (lecture 1) · Plan Drawing -> Coordinates can assume origin · crid Reterence: - & figure grid reterences. • 2D ⇒ small area • But for globe => latitude, longitude · North Pole, South Pole · Equator · Line that passes thro' N-spole - Meridian (longitude lines · Line parallel to equator - latitude line. · Longitude - meridian ; Parallel - latitude · Meridian that passes through Greenwich · Curvilinear Coordinates - Pegree, Minutes, seconds latitude _____latitude lines Isngitude longitude Lines 🥽

Classification of Maps	
on basis of scale	on basis of contents and purpose
1277ge scale : > 1:25K	Physical Maps
medium scale: 1:25K 1:50K, 1:250K	Cultural Maps
small scale : < 1:250K	
very small scale: <1:1M	
Plottable Erron	
and the second s	

It is considered to be a pencil dot on the map which is = 0.25 mm in measurement
It is smallest dimension of a feature that can be represented on a map.
Plottable Error determines the scale of the map.
Eq:- 1:10,000 scale 1mm = 1.0,000 mm Plottable error 0.25mm = 0.25×10,000 = 2500 mm or 2.5 m
Topographic features smaller than 2.5m in dimension cannot be shown on this scale of map.
Eg:- 1: 250000

Plottable error 0.25mm=0.25 x 250000 = 62500 mm or 62.5m

Techure 4 GTS

• GEOID - Geopotential Surface - Potential is constant - Gravity is perpendicular at every point. Ref Ellipsoid Geoid

• REFERENCE ELLIPSOID - Just a mathematical function.

Representation of a Point

Height — water flows from one point to another.
 got to do with gravity.

• Retering 9 pt. in difficult here.

• Ellipsoid - Used to represent a -honizontal coordinate • Geoid - Used for referring height

COORDINATE SYSTEM
Requirements to define Coordinate System
· Location of the Onigin
GEOLENTRIC -> center of earth's surface
HELIO CENTRIC -> conter of the sun
TOPO CENTRIC -> conter of topocontrils origin (specific location)
· Onightation of the duis 7
<u> ۲</u>
∠ ×
· Parameters which define the C.S.
Greenwhith N
Menidian God >N.O
S Equatorial Manue

VERTICAL DATUM

· (LEOID + Reference Surface · Mean sea Level is approximated as coold. (1th not goold) · But there is variation 6/10 Mean sea Level and Coold. · Tides called by pull of earth and Run · It is called sea surface Topography (SST) La Difference 4/10 MSL and Goold. · MSL @ Goold · MSL @ Goold · MSL @ Goold · MSL @ Goold · MSL # Hil H2 · Contouring · Flow Lining

$\cdot \times, \forall, z \rightarrow \phi, \lambda, h$	6 or 8	9 91
H		
" Contours -> Imaginary lines of same eleve	rtion.	
· Map Projection:		
Transformation of 3D space to 2D map.		
· No projection is without distostion.		
\wedge		
Acylinder		
I can use		
Cylinder.		
· · · ·		

CARTOGRAPHIC PROPERTY
[CONFORMAL -> Maintain the shape on 3p same as in 2p.
, EQUAL ARGA PROJECTION -> Maintain equal area.
/ EQUIDISTANT PROJECTION -> Maintain the Rame Length
These 3 properties are mutually exclusive properties. If I want
to maintain area. I lose the others. Similarly for others.
SCALE 1:25000 $\lim m mab = 25000 \text{cm}$ on ground
SCALE FACTOR SF = Map Distance
Ground Distance
1.
KZI EXAGGERATED
K<1 DIMINISHED
· As you move away from meridian it get more and more
exaggerated.

Mercator (nomonic Goodesic line 4 knumb line -> curred L' snortest Distance - Straight line. Shortert Distance Air Force People want them An every plane is coming. La gnomonic projection. pist & Bearing is exact · Aero-Nanticel Maps we make use.

· [It maintain bearing and equidistant-· [It cloce n't maintain stops.

Azimuthal Projection Three prespective projections - Gnomonic Projection. Keep at the centred earth - Stereographic - A+ the after side geordin. - Orthographic Projection Cycome from infinity the roya. lunar. mapping, etc · Stercographic is very important because it is contormal. · unomonic is a equidistant.

	none to	convert		
lattitude, Los	njitude ->	UTNA	Coord	

the.

- In India we take
$$\frac{1}{6}$$
 the -1 h China they take $\frac{1}{7}$

- · Standard Parallel -> Scale Factor = 1
- " limiting Parallel → limit to area that is to be mapped. Central Parallel →

Value of Central Parallel is calculated as

$$l = log N_1 \cos \phi_1 - log N_2 \cos \phi$$

 $\begin{array}{ccc} q_1 \\ q_2 \end{array}$ isometric latitude

Georeterencing

Geo-referencing: Aligning Raster & Vector Data to the Real World

what is Geo-referencing?

· Geo-referencing refers to process of assigning geographic coordinates to data in order to represent it on a map.

* It is crucial as it allows for the overlay and integration of various kinds of data such as satellite imagery, aerial protography and maps, to create a complete and accurate representation of real world.

Why georetencing is important?

• It provides a crucial line blw data and the real world. After talking about importance and significance of geo-referencing.

How to geo-reference your data? GCP (Ground Control Points) Control Points

Other geospatial data having a known coordinate system.

pation and Duriation
L'Alle l'Alection
If it is different If it is different
-) de dature -> de projection
transformation.

(nCPs: - Points that can be accurately identified on dataset (raster data) as well real world coordinates (AOI - Area of Interest).

Points for which → Real world coordinates → accurately known. Using those we can georeference our whole image. CPs → Relate raster with real world.

How to choose control points.

Open to sky → should not be placed near tall building tree.
 Identifiable in my imagery. → should have good contrast to easily identify in image.
 Well distributed in my area of interest.

"Well distributed in my area of interest.

Transformation Models	
Xout = F(Xin, yin) } -+ We are Yout = G(Zin, yin)	using Mathematical Models
(I.) Zero Orden folygonal X'=X+A Y'=X+A	
2.) Affine on 1st order Polynomial	· Minimum, 3 CBs
$\chi_{out} = A \chi_{in} + B \gamma_{in} + C$ $\gamma_{out} = D \chi_{in} + E \gamma_{in} + F$	"More than 3 should be done — least square adjust and use the best fit.
Most Common Choice.	
(4) 3 rd order _ min 10 Chs	

Vector Model real world objects as liscrete objects. Tree - Point Road - Polytine Pond - Polygon Both the models we need to model our real	Roster Pata Model • Model earth as grid of cella (called pixela). • Store Area is stored in a pixel. (we call it resolution) • Every cell occupy ImXIM if Resolution = Im. World data.	In Transformation, shape of image changes. \rightarrow We need to make mose pixels square $Columns = (X_{max} - X_{min})$ $Coll Size$ $Rown = (Y_{max} - Y_{min})$ $Coll Size$
· We can put aride some CPs to serve as check · Then we can find the RMS Croor at those · Read RMS Error carefully.	· l+just Gave I ralue at its pixel. :k points. - chack points.	Recampling: Aller comm () Nearest Neighbour: Default method of recampling Lintupolation - Each cell gets yable as the closest meighbour. - Eucle ' Default in most softwares. - Sometimes blockly appearance bese many cell get same value. - Good for continuous data.
 2) Billinear Do weighted mean (based on distance) Very suitable for continuous data ence as We also remove certain bigh frequency continuously varying data. Blurniners present. 3) Bicettic Generate surface from 16 nearest points. Time - taking because it has to take No of CRs for polynomial transform, n= (p+1).) of H2 4 meanest meighbour Temperature data but good for - 16 prints.	 Lab:- ① select WUS 84 (1+ jo known coordinate system of CPs) ② Georeterence → • For most of topo sheets → make CP the intersection pt.g gratitude lines. • Add CPs. • Auto-apply → can on/off based on convenient. * "L"→To on foft raster layer

Data Sat. Aerial · Images ¿ · Maps / SOI · Drone · charts · Census survey, etc.

How to input these data in a GIS? Need for Data Models.

Metadata

Data	about	data	or	information	about	data.

	. GIF
Header	- 1 P 9
	J. 0 pr0
	ti d
Data	,

- Indian entity can capture any data, disseminate the data, process the data, etc all can be done.
- · Restalctions for foreign countriles.

Link based topology model.

TIN (Triangulated Inregular Network)

· Wherever you have to draw a surface -> use TIN

Z₂>Z₁ \Rightarrow water will the work from 2 to 1. (We need to know surface (terrain) as well.

TIN -> used in computer graphics -> Very. Smp.

More accurate representation of the terrain. Because the area is well distributed and more close to an equilateral triangle.

* SIMPLICES (DS 14 2D SHAPC) OF TESSELATION

(Thiessen or Dirichlet tesselation)

Thiessen Polygon or Varonoi Tile → same name.
 Delaunay T=niangulation.

Wont to do it with Graphicelly -> a Algorithm \downarrow Difficult pulaunay friangulation working on γ4 pts. plagonal swapping algorithm

· Non-spatial data - stored in foreign key. · Simple list Ordered Sequential files 1 1/2 $\frac{n}{2k} = 1 \implies n = 2^{k}$ $log_2 n = log_2 2^k$ · Not good because always have to K= log_n search is order. Indexed Files · Soil Profile defined on some attoributes. ? Revene the table C Index file of unique attributes Ly helps in making search fast. La Problemo - Anything changes, have to change index files.

DBMS Spatial spatial data also • GIS Attribute related by Inter All these data are inter-related. continuity

Pnimary Keys -> (one attribute 7 ° unique	that is consi • value of ke	dered priv y is unique	mary Key. for each tuple	
	H H H	上 中 日	1 3 2 2 3 4		
Foneign Key ->		THE T	(2 (4		

TERMINOLOGY

·Made of large no. of yell linked | connected to each other thro' Keys.

	1. HA-2 2. Project → Be consistent What we know now? — GIS — What queries it answer — Data Modul ~ V J topology Attribute BOBMS AU information is stored by means of some relations QUE Queries Spatial Analysis → 80'le of our day to day activities are spatial (related to space)
Types of Queries I Retrieval Re-classification Overlay Operations	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $

Low PQSS fifter - those areas which are having low frequency will not get effected much and high treq will get subdued. Input output Grayscale — $\binom{86it}{(2^{8}-1)} - (0-255)$ Ligh Image White - 255 Black - 0 100 low pass example. Kernel sum = 0, the divide by 1. DEM - No building, trees, etc - only ground DSM - All 11 "1 "1 + ground. Slopes and Aspects 000 les High Pass Example: drop of water CERTO percolation area low pass example. Q1 where will this drop go? high trig, are - lighted can trace the path of drop in Gdges → that arec. suppose rainfall happens and one doop fells is every prixel . where will water go. Channels @2 ____ how much area contributing water to Kiss pixel) Catchment .

yellorn Ex:-Derivation of hydrological parameters. Sheizhbour head d Dem Aspect :- Direction Northern Convolution Filter Q Way and Where channels will form) / Aspect pirection of the Right SASpects. How to nandle edges of data the three or don't calculate. T = 2.5D (Blue 2D and 3D) DEM- Hillshade View DEM ~ Hillshade. Linot only for elevation act, it turberature. Lit can be for any other data, it turberature. Linot only for elevation data 2 How to generate hillshade Good for visualisation. REsur \rightarrow When incidence angle is small? → well 'lit As it gets the from 0° to 30°? → Poorth lit 0 -90 255-0 Giving givels life this !!

Nodes - junction points -> lines or arcs or points undivected graph directed graph \mathcal{R} Litve or - ve arc coming going towards away Stop - where path-must reach -> Tour center - location where resources an supplied. Tyrn > Shortest path

Chamfer Tr	ansform	
It creates a physical distance map.		
		chamler transform of circle
<u> </u>	\bigcirc	- concentric sing
	+	
	distate.	

Proximity (Spatial Interpolation Rule

Quadrant Density bava analysis :-2: = no. of points inside a quadratit. Var./Mcan Approad - On care where it tall did -1 At last show BoundingBox and there and can decide as at M.

