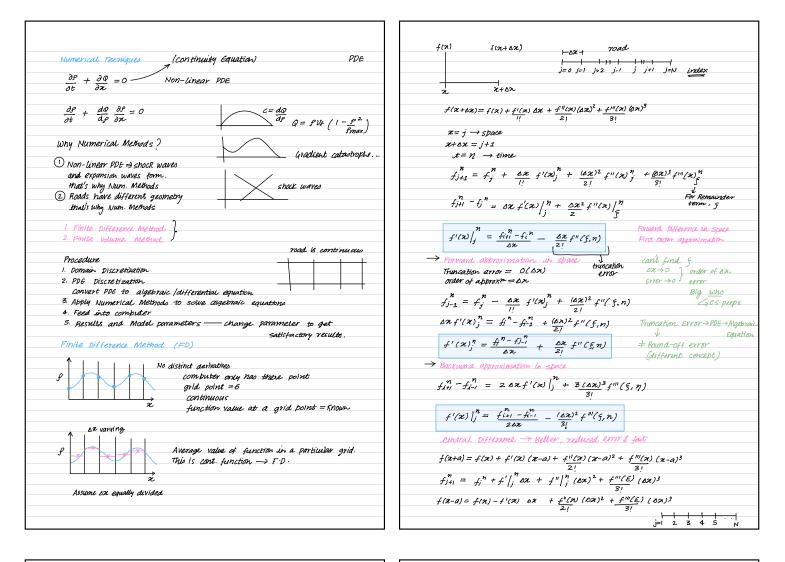
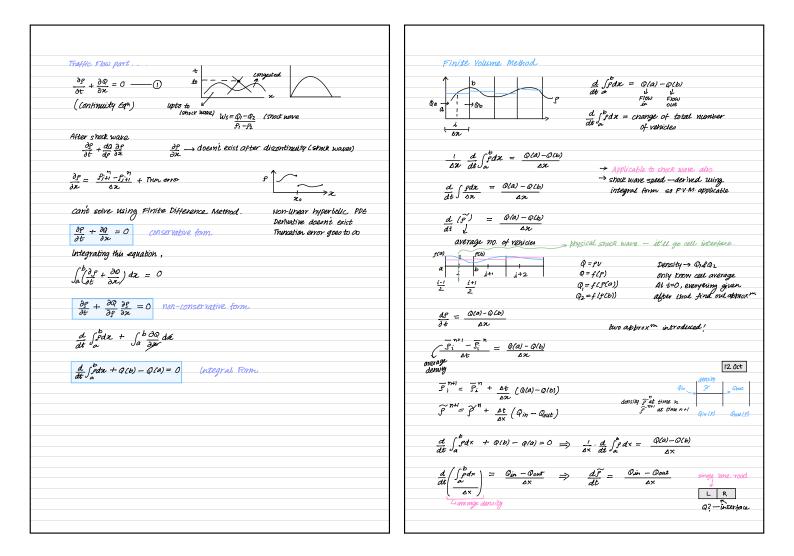
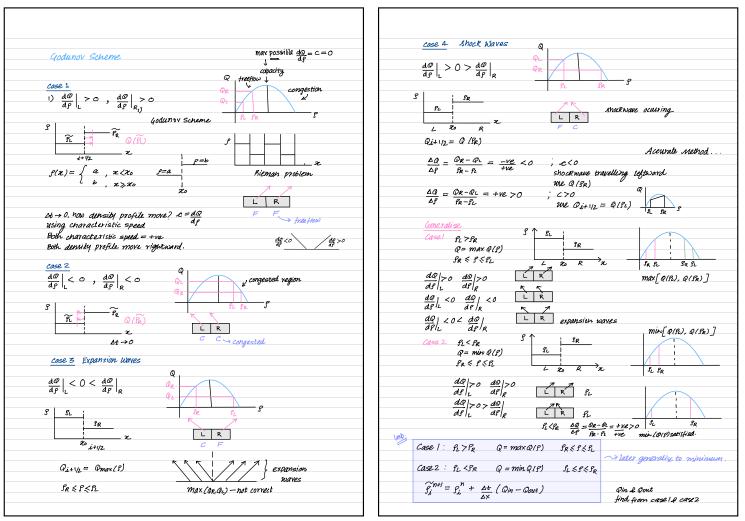
	Quiz-1 Assignment - Not graded
	End sem
CE481A	Self organized Behavior of Army Ants in bidirectional traffic
	Anny Ante
	 Army ants are almost completely blind. 'Pheromone'
	They interact through 'Pheromone' - a chemical substance.
TRANSPORTATION FACILITIES DESIGN	They loosely form 3 lanes
	Pheromone define and decay.
	Army ants more from low conc" to high conc".
PART-2 TRAFFIC DESIGN	Inbound ants release high concr as compared to outbound ants.
	 Pheromone evaporates as well.
	$ \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} $
Dr. Venkatesan Kanagaraj	0 = = = = = 0 outbound ant preromone
	Nest Food Inbound -high conch-
₩ ₩ ₩	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	move nere
	C > C (Managered)
	CL > S (threshold) Modeling of ants traffic
	then move there Model for Pheromone
	Traffic Flow for army ants
	Foraging in army ants
	Scout ants explore the environment to find food.
	Fixed scouts for colony sizes.
	Interaction through pheromone only.
	No and eaching in an end was descent
	No congestion in army ants movement
	army ants
	No congestion happens
	s congested graph always absent
	free 2 congested I free traffic only traffic traffic
	Assumptions
	Physomone — point source
	(finite amount of pheromone) $m_{I} > m_{O}$ (inbound 7 outbound)
	For N ants, NXm mass concer of
	pheromone in each time stamp
	$\frac{t=t_{0}}{t=t_{0}+\Delta t}$
	Pheromone - defuse and decay PDE equation
	$\frac{\partial c}{\partial t} = D \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} \right)^{-1} (diffusion \ modul)$
	lucka lucka
	→ diffusion coefficient modul borameter
	Boundary Conditions: $\alpha = \infty$ to $+\infty$ Analytical sol ⁿ - linear PDE
	y: - ao to + ao] Numerical solu
Aman	$\neg a$ to $+a \rightarrow Apply 2$ dimensional fourier transform.


-r(t-to)	parameter
pecay:- ci × e- ~(t-to)	Mathematical model for ant movement
1 1bh	Self driven particle model
$\frac{dU_{j}}{dt} = Fd + \Sigma F_{ij} + n_{j}$	-similar to car following model
at J=1	Sul aniver particl model Similar to car following model Sulf propelling force
self propelling physical no	isclerror term
force force	
(pheromone conc ⁿ) > 81 phys	sical Un by - both dirn
8 1 ton	a a a a a a a a a a a a a a a a a a a
$\vec{E} = -v_i^{\circ} d\vec{i} - \vec{v}_i^{\circ} - v_i^{\circ} d\vec{i}$	Nowing modul formula
	on for many others
depends on desired dirul	
	Jonal Victor
phiromoni conc~	
Hove be to d? down it down	alies (using (tr)
Have to find? desired dire desired spe	enonal view (ai)
- alsiria spe	la (00)
	and the second state the
	concentration — no detection
1	
	2
$\Im_{C} > \delta - saturation$	(high concentration)
	tion, doesn't matter how much you release
	no impact on ant speed due to no detection.
eg:-s=10 — 20]-	_no matter
405	same speed of ant
Use of U; O(Cp) = U; Max (tan	$h\left(\frac{c\rho}{Ac\rho}-\beta\right)+tanh\beta$
/+	tanhß
××	< × ×
mio course>	
Fundamental	$\begin{bmatrix} \frac{\partial P}{\partial t} + \frac{\partial Q}{\partial x} = 0 \end{bmatrix} \text{continuity} \\ equation$
piagram	- ot on - equation
	> Non-linear
Numerical Methods ~~No	ot in syllabus but real learning in engineering
— Power Series	tm
· — Power Scries — Taylor Series — rumainder te	
· — Power Scries — Taylor Series — rumainder te	solve this—why?—derivative don't exist
· — Power Scries — Taylor Series — rumainder te	solve this—why?—derivative don't exist
— Power Series — Taylor Series — rumainder te — Finite Differme Method - carli	solve this—why?—derivative don't exist
— lower Series — Taylor Series — remainder te — Finile Difference Method - carls — Finile Volume Method. — Good and Over Scheme	·
— lower Series — Taylor Series — remainder te — Finile Difference Method - carls — Finile Volume Method. — Good and Over Scheme	solve this—why?—derivative don't exist ion modul — common modul in traffic flow the

<u>CE481</u>	30 Sept
wer series	Jo Sept
<i>a</i> o <i>n n n n n n n n n n</i>	,
$\sum_{n=1}^{\infty} Cn(x-a)^n \longrightarrow ln finite series$	1. convergence
\rightarrow center of P.S.	2. divergence
$n = o_1 i_1 2_1 3_1 \ldots$	2
$c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^2 +$	$(x-a)^2 + \cdots + \cdots$
1) Radius of convergence	
$ \alpha - \alpha < R$	
2) Interval of convergence	tests for convergence?
	How to know its convergence
(mmpmm) a-r ^a a+r	HOW TO ATOM TOS LOT WETGENCE
a-k " atk	infinite CD &- ali-vi
$1+x+z^2+\cdots$	infinite GP $\mathcal{E} = a/(1-\gamma)$
LINTE + LINE A DC	$=0$ $\gamma = 1$ $ \alpha < 1$
$ \qquad \qquad$	
20 Cn (z-a) ⁿ Cn=, E Cn (z-a) ⁿ	/ ³
$\sum_{0} Cn(x-\alpha)$	<i>a=0</i>
	- Commitmed -
	-1 0 1 not including
	end points.
	$ x-q \leq R$
	12-0)<1
	(2)<)
Nathematically hows to ensure its ca	
Mathématically how to ensure its ca Bortial sums	
Partial sums	
Partial sums $S_0 = C_0 (X - a)^0 = C_0$	nvergunce
Partial sums $S_0 = C_0 (\mathcal{X} - \alpha)^0 = C_0$ $S_1 = C_0 + c_1(\mathcal{X} - \alpha)$	
Partial sums $S_0 = C_0 (X - a)^0 = C_0$	nvergunce
Partial sums $S_0 = C_0 (\mathcal{X} - \alpha)^0 = C_0$ $S_1 = C_0 + c_1(\mathcal{X} - \alpha)$	nvergunce
$\begin{aligned} & \text{Partial Sums} \\ & S_0 = C_0 \left(\mathcal{X} - a \right)^0 = C_0 \\ & S_1 = C_0 + C_2 \left(\mathcal{X} - a \right) \\ & g_2 = C_0 + C_1 \left(\mathcal{X} - a \right) + C_2 \left(\mathcal{X} - a \right)^2 \\ & \vdots \end{aligned}$	nvergune truncated power series
$\begin{aligned} & \text{Partial Sums} \\ & S_0 = C_0 \left(\mathcal{X} - a \right)^0 = C_0 \\ & S_1 = C_0 + C_2 \left(\mathcal{X} - a \right) \\ & g_2 = C_0 + C_1 \left(\mathcal{X} - a \right) + C_2 \left(\mathcal{X} - a \right)^2 \\ & \vdots \end{aligned}$	nvergune truncated power series
$\begin{array}{l} B_{0} + L_{0} \leq sums \\ S_{0} = C_{0} \left(\mathcal{X} - A\right)^{0} = C_{0} \\ S_{1} = C_{0} + C_{1}(\mathcal{X} - A) \\ g_{2} = C_{0} + C_{1}(\mathcal{X} - A) + C_{2}(\mathcal{X} - A)^{2} \\ \\ \\ \\ \end{array}$ $\begin{array}{l} S_{n} = (o + C_{1}(\mathcal{X} - A) + C_{4}(\mathcal{X} - A)^{2} + \cdots \end{array}$	nvergune truncated power series
$\begin{aligned} & \text{Partial Sums} \\ & S_0 = C_0 \left(\mathcal{X} - a \right)^0 = C_0 \\ & S_1 = C_0 + C_2 \left(\mathcal{X} - a \right) \\ & g_2 = C_0 + C_1 \left(\mathcal{X} - a \right) + C_2 \left(\mathcal{X} - a \right)^2 \\ & \vdots \end{aligned}$	nvergune truncated power series
$\begin{array}{l} lantial $ sums \\ S_0 = c_0 (\mathcal{X} - a)^0 = c_0 \\ S_1 = C_0 + c_1 (\mathcal{X} - a) \\ 9_2 = c_0 + c_1 (\mathcal{X} - a) + c_2 (\mathcal{X} - a)^2 \\ \\ \\ \\ \end{array}$	nvergune truncated power series
$\begin{array}{l} \text{Rattal sums} \\ \text{So} = C_0 \left(\mathcal{X} - a \right)^{\circ} = C_0 \\ \text{Si} = C_0 + C_0 \left(\mathcal{X} - a \right) \\ \text{Sg} = C_0 + C_1 \left(\mathcal{X} - a \right) \\ \text{Sg} = C_0 + C_1 \left(\mathcal{X} - a \right) + C_2 \left(\mathcal{X} - a \right)^2 \\ \\ \text{Sn} = C_0 + C_1 \left(\mathcal{X} - a \right) + C_2 \left(\mathcal{X} - a \right)^2 + \cdots \\ \text{How to difine its convergence} \\ \text{dim} \text{Sg} = \text{Sg} \end{array}$	nvergune truncated power series
$\begin{array}{c} \text{Rattal sums} \\ \text{So} = C_0 (2-a)^{\circ} = C_0 \\ \text{Si} = C_0 + C_0(2-a) \\ \text{Sg} = C_0 + C_1(2-a) \\ \text{Sg} = C_0 + C_1(2-a) + C_2(2-a)^{\circ} \\ \text{Sn} = (0 + C_1(2-a) + C_2(2-a)^{\circ} + \cdots \\ \text{How to difine its convergence?} \\ \text{How to difine siz convergence?} \\ \text{Him } S_n = S \\ \text{some finite value} \end{array}$	nvelguna truncated power series + Cn C Z-a) ⁿ
$\begin{array}{l} \text{Rattal sums} \\ \text{So} = C_0 \left(\mathcal{X} - a \right)^{\circ} = C_0 \\ \text{Si} = C_0 + C_0 \left(\mathcal{X} - a \right) \\ \text{Sg} = C_0 + C_1 \left(\mathcal{X} - a \right) \\ \text{Sg} = C_0 + C_1 \left(\mathcal{X} - a \right) + C_2 \left(\mathcal{X} - a \right)^2 \\ \\ \text{Sn} = C_0 + C_1 \left(\mathcal{X} - a \right) + C_2 \left(\mathcal{X} - a \right)^2 + \cdots \\ \text{How to difine its convergence} \\ \text{dim} \text{Sg} = \text{Sg} \end{array}$	nvelguna truncated power series + Cn C Z-a) ⁿ
$\begin{array}{c} \text{Rattal sums} \\ \text{So} = C_0 (2-a)^{\circ} = C_0 \\ \text{Si} = C_0 + C_0(2-a) \\ \text{Sg} = C_0 + C_1(2-a) \\ \text{Sg} = C_0 + C_1(2-a) + C_2(2-a)^{\circ} \\ \text{Sn} = (0 + C_1(2-a) + C_2(2-a)^{\circ} + \cdots \\ \text{How to difine its convergence?} \\ \text{How to difine siz convergence?} \\ \text{Him } S_n = S \\ \text{some finite value} \end{array}$	nvelguna truncated power series + Cn C Z-a) ⁿ
$\begin{array}{c} \text{Rattal sums} \\ \text{So} = C_0 (2-a)^{\circ} = C_0 \\ \text{Si} = C_0 + C_0(2-a) \\ \text{Sg} = C_0 + C_1(2-a) \\ \text{Sg} = C_0 + C_1(2-a) + C_2(2-a)^{\circ} \\ \text{Sn} = (0 + C_1(2-a) + C_2(2-a)^{\circ} + \cdots \\ \text{How to difine its convergence?} \\ \text{How to difine siz convergence?} \\ \text{Him } S_n = S \\ \text{some finite value} \end{array}$	nvelguna truncated power series + Cn C Z-a) ⁿ
$\begin{array}{c} \text{Rattal sums} \\ \text{So} = C_0 (2-a)^{\circ} = C_0 \\ \text{Si} = C_0 + C_0(2-a) \\ \text{Sg} = C_0 + C_1(2-a) \\ \text{Sg} = C_0 + C_1(2-a) + C_2(2-a)^{\circ} \\ \text{Sn} = (0 + C_1(2-a) + C_2(2-a)^{\circ} + \cdots \\ \text{How to difine its convergence?} \\ \text{How to difine siz convergence?} \\ \text{Him } S_n = S \\ \text{some finite value} \end{array}$	nvelguna truncated power series + Cn C Z-a) ⁿ

Taylor Seriles	Maclaunin series
$e^{0} = 1$ $e^{x} = 1 + x + x^{2} + x^{3} + \cdots$	If $a=0$ then taylor series is called. Maclaurin series.
$e^{0^2 = 1} e^{x} = \frac{1 + z + z^2}{2!} + \frac{z^3}{3!} + \cdots$	
e ^{o·2} ≈1 matching same value at x=0	$f(a) = \sum_{n=0}^{\infty} \frac{f^n(o) z^n}{n!} \qquad z < R$
Taylor series ex=1	
Taylor series $e^{n} = 1 + \infty$	$Cn = \frac{f^n(4)}{n_j}$
A	ni ni
$\mathcal{C}^{\mathcal{X}} \approx \mathcal{C}_{\mathcal{X}}^{\mathcal{O}} \qquad \mathcal{A} = \mathcal{O} \stackrel{\mathcal{Z}}{\underset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}}}} (\mathcal{X} - a)^{\mathcal{H}} \qquad \mathcal{C}^{\mathcal{L}} = \overset{\mathcal{C}}{\underset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}}}}} = \overset{\mathcal{C}}{\underset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}{\overset{\mathcal{C}}}}}} $	
	Taylor's Theorem
$C_0 = I$	(1)(a)
$e^{\mathbf{x}} = c_0 + c_1 \mathbf{x}$	$f(\alpha) = \ge \frac{f^{\eta}(\alpha)}{n!} (\alpha - \alpha)^{\eta} \qquad \text{Infinite series}$
$\frac{d}{dx}e^{x} = 0 + c_{i}$	
-1-2	Taylor Polynomial — truncation of taylor series
e ^o = 1 = 0 e ^x ≈ 1+ <i>x</i>	$P_0 = f(a)$
$l^{x} \approx l + \infty$ $l^{x} = c_{0} + G_{x} + C_{0} x^{2}$	$P_1 = f(a) + f'(a)(x-a)$
$\frac{d}{dx}e^{x} = c_{1} + 2c_{2}x \qquad \qquad$	
$d\pi$ $\frac{1}{2!}$ a_{11} $\frac{1}{2!}$ a_{12} a_{13} $\frac{1}{2!}$	$\beta_{1} = f(a) + \frac{f'(a)(x-a) + \frac{f''(a)(x-a)^{2}}{2!}$
$\frac{d}{dx} e^{x} = 2c_2 \qquad c_2 = 1/2 \qquad \longrightarrow x \in R \qquad (-\infty, \infty)$ $\xrightarrow{\rightarrow} \text{ Badius of convergence is } \infty.$	
$dx \rightarrow Radius of convergence is \infty.$	$P_n = f(a) + \frac{f'(a)}{(x-a)} + \frac{f''(a)}{(x-a)^2} + \cdots + \frac{f''(a)}{(x-a)^n} (x-a)^n$
· •	$P_{n} = f(a) + \frac{f'(a)}{l!} (x-a) + \frac{f''(a)}{2l} (x-a)^{2} + \dots + \begin{pmatrix} f \frac{n(a)}{m!} \\ m! \end{pmatrix} (x-a)^{n} \\ (n + 0) + \frac{f'(a)}{n!} (x-a) + \frac{f''(a)}{2l} (x-a)^{n} $
For general functions,	nth order taylor polynomial
$f(\pi) = \sum_{n=0}^{\infty} c_n (\pi - \alpha)^n = c_0 + c_1 (\pi - \alpha) + c_2 (\pi - \alpha)^2 + \cdots$	$f(n) = f_n + R \qquad \qquad f(n) \qquad f(n)$
$\int \frac{du}{du} = \frac{2}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left($	
f -> continuous	upto some a 2
$f \rightarrow infinitely many times differentiable$	finite order
$\chi = \alpha$	$f(\mathbf{x}) = P_0 + R$
$f(a) = c_0 + 0 + + 0 + \cdots \qquad c_0 = f(a)$	f(n) = f(a) + R
	$f(a) = f(a) + 0 \rightarrow zero remainder term have to match at a d$
$f'(x) = c_1 + 2c_2(x-a) + \cdots$	$f(\hat{\alpha}) = f(a) + R \qquad not necessarily by the second states of the sec$
$f'(a) = c_1 + 0 + 0$ $c_1 = f'(a)$	
$f''(\pi) = 2C_2 + 3 \times 2C_3 (\pi - \alpha) + \cdots$	Lagrangian Mean Yallue Theorem (MVT)
$f''(a) = 2C_2$ $C_2 = \frac{f''(a)}{Z}$ $C_n = \frac{f^n(a)}{n_1}$	() continuers () difference () ()
	j - contribucus j - autoritada
$f(\mathbf{x}) = \sum_{n=0}^{\infty} f(\mathbf{x}) (\mathbf{x}-\mathbf{a})^n$	$f(a) \qquad \qquad f(b) = f(b) = f(a) \qquad \qquad f(c) \qquad \qquad$
a=a / P	$f'(\mathcal{E}) = \frac{\Delta f}{\Delta x} = \frac{f(b) - f(a)}{b - a} \qquad \mathcal{E} \in I(a b)$
$C_n = \frac{f^n(a)}{a+k} \qquad \begin{array}{c} n-a < k\\ a-k \frac{q}{a+k} \end{array}$	
$C_n = \frac{f^n(a)}{n!} \qquad \qquad$	f(b) = f(a) + f'(E)(b-a)


$f(\pi) = f(a) + R$ $f(\pi) \approx f(a) + c (\pi - a)$ $f(\pi) \approx f(a) + c (\pi - a)$ $f(\pi) = f(\pi) + c (\pi - a)$ $D(\pi) = f(\pi) - c [\pi - a] \qquad (Difference blue original and approx. for$ $f(\pi) = D(\pi) = 0 \qquad \pi = a$ $f(\pi) = D(\pi) = 0$	nction)
$construct \ c \ \widetilde{c}$ $f(\widehat{x}) = f(\alpha) + \widetilde{c}(\alpha - \alpha)$ $D(x) = f(\widehat{x}) - f(\alpha) - c \widehat{x} - \alpha \qquad (Dilference blue original, and approx. for f(\alpha) D(x) = 0 \qquad x = \alpha $ $f(\widehat{x}) = 0 \qquad x = \widehat{x}$ For $D(x) = 0, c = \frac{f(\alpha) - f(\alpha)}{\alpha - \alpha} = f'(\xi) (using MVT)$ $c = f'(\xi)$	nction)
$f(\hat{x}) = f(\alpha) + \tilde{c}(\alpha - \alpha)$ $D(x) = f(\hat{x}) - f(\alpha) - c \hat{x} - \alpha \qquad (Dilference blue original, and approx, for f(\alpha) = 0(x) = 0 \qquad x = \alpha \qquad (Dilference blue original, and approx, for f(\hat{x}) = 0(x) = 0 \qquad x = \alpha \qquad (Dilference blue original, and approx, for f(\hat{x}) = 0(x) = 0 \qquad x = \alpha \qquad (Dilference blue original, and approx, for for D(x) = 0, c = \frac{f(\alpha) - f(\alpha)}{\alpha - \alpha} = f'(\xi) \qquad (using MVT) c = f'(\xi)$	nction)
$D(\mathbf{x}) = f(\mathbf{\tilde{x}}) - f(\mathbf{a}) - c \mathbf{\tilde{x}} - a \qquad (Difference blue original and approx. for f(a) D(\mathbf{x}) = 0 \qquad \mathbf{x} = a \qquad 1f(\mathbf{\tilde{x}}) D(\mathbf{x}) = 0 \qquad \mathbf{x} = \mathbf{\tilde{x}} \qquad 1For D(\mathbf{x}) = 0, c = \frac{f(\mathbf{x}) - f(\mathbf{a})}{\mathbf{x} - a} = f^{1}(f) (nsing MVT)c = f'(f)$	nction)
f(a) D(x)=0 x=a i = f(x) D(x)=0 x=x j = f(x) D(x)=0 x=x j = f'(f) (asing MVT) $c = f'(f) c = f'(f) dx = f'(f)$	nction)
For $D(\lambda) = 0$, $C = \frac{f(\lambda) - f(\lambda)}{\lambda - \alpha} = f'(\xi)$ (hsing MVT) $C = f'(\xi)$	
For $\mathcal{D}(\mathbf{x}) = 0$, $c = \frac{f(\mathbf{x}) - f(\mathbf{a})}{\mathbf{x} - \mathbf{a}} = f'(f)$ (Asing MVT) c = f'(f)	
c = f'(f)	
	_
5 0d	
Mean Value Theorem	
f(b) =	
$f(b) = bf = \frac{f(b) - f(a)}{b - a} \xi \in (0;b)$	
$f'(\xi) = average slope \frac{\Delta f}{\Delta x} = \frac{f(b) - f(b)}{b-a}$	<u>(a)</u>
a 5 b 1(2°) 1(a) 7 Taylor Series:	
f(a)	
Taylor Series:	
$f(x) \approx f(a) + c(x-a)$ exactly match at the	ore ots.
$f(\mathbf{x}) \approx f(\mathbf{a}) + \frac{c}{2} (\mathbf{x} - \mathbf{a})$ exactly match at the other points, not necess	
Remainder term to match.	,
$D(\alpha) = f(\alpha) - f(\alpha) - \frac{c}{l!} (\alpha - \alpha)$	
$x=a \qquad 0=f(a)-f(a)=0$	
$0 = f(x') - f(a) - c(x' - a) \implies c = \frac{f(x') - f(a)}{x' - a} = f'(\xi)$	
$f(x) \approx f(a) + \frac{f'(f)}{l} (x-a)$	
Pernainder term for 0 th order po4nomial. 2 nd order	
$f(x) \approx f(a) + f'(a)(x-a) + c(x-a)^2$	
<u>1</u> , <u>z</u> ,	
$f(x) \approx f(a) + \frac{f'(a)}{1!} (x-a) + \frac{c}{2!} \frac{(x-a)^2}{2!}$ $f'(x) = \frac{f'(a)}{2!} + \frac{2c}{2!} (x-a)$	
2!	


 $D(\mathbf{x}) = f(\mathbf{x}) - \left[f(\mathbf{a}) + \frac{f'(\mathbf{a})}{l!} (\mathbf{x} - \mathbf{a}) + \frac{c}{2!} \frac{(\mathbf{x} - \mathbf{a})^2}{2!} \right]$ $D'(\mathbf{x}) = f'(\mathbf{x}) - f'(\mathbf{a}) - c(\mathbf{x} - \mathbf{a})$ $C = \frac{f'(a) - f'(a)}{a - a} = f''(f)$ $f(\alpha) = f(\alpha) + \frac{f'(\alpha)}{1!} (\alpha - \alpha) + \frac{f''(\xi)}{2!} (\alpha - \alpha)^{2}$ Remainder Term For Nth order polynomial $f(\alpha) = P_n(\alpha) + Rn$ $= \frac{m(x) + n}{n!} + \frac{f'(a)}{2!} (x-a)^{2} + \dots + \frac{m(a)}{n!} (x-a)^{n} + \frac{f'(a)}{n!} (x-a)^{n} + \frac{f'(a)}{n!} (x-a)^{n+1} + \frac{f'(a)}{(n+1)!} (x-a)^{n+1} + \frac{f'(a)}{(n+1)!} (x-a)^{n+1} + \frac{f'(a)}{(n+1)!} + \frac{f'(a)}{(n+1)$ Example: e^x a=0 $e^{x} = \sum_{i=0}^{\infty} \frac{z^{i}}{i+i} \quad x \in \mathbb{R}$ $\frac{d^{n}}{dx^{h}} e^{x} = e^{x}$ $e^{\mathbf{x}} = P_n(\mathbf{x}) + Rn$ $e^{\chi} = \sum_{i=0}^{n} \frac{\chi_i}{i!} + R_n \qquad \left\{ \cdots + \langle a \rangle = i = f'(a) = f''(a) = \cdots + f^{n}(a) \right\}$ $n \rightarrow c_{D} , R_{P} \rightarrow 0$ series converges $n^{+1} f c_{D}$ $R_{n+1} = \frac{f^{n+1}(f)}{(n+1)!} (x-a)^{n+1} = \frac{ef}{(n+1)!} (x-a)^{n+1} = \frac{ef}{f} (x-a)^$ lim R_{n+1} =0 n+00 $\begin{array}{ccc} n+ao & & & \\ \lim_{n\to\infty} & \frac{e^{5}(x-a)^{n+j}}{(n+i)!} = \frac{e^{5}\lim_{n\to\infty} \frac{x^{n+j}}{(n+i)!}}{n+ko} & \xrightarrow{n+j} & o \\ \hline & & \\ \frac{x^{n+j}}{(n+i)!} & \frac{7^{n}}{n!} & & \\ \end{array}$ $\frac{7^{n}}{n!} = \frac{7}{n} \underbrace{\frac{7}{2}}_{<1} \frac{7}{7} \frac{7}{6} \frac{7}{5} \frac{7}{4} \frac{7}{3} \frac{7}{2} \frac{7}{1}, \frac{7}{1} \frac{7}{1} \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac{1}$ ->0

$$\frac{Analytical approximation \rightarrow Free first and first approximation \rightarrow Free first and first approximation of the entry of the o$$

$$g_{j}^{n} + \frac{p^{n}}{p!} \int_{0}^{\infty} e^{\pm} \frac{$$

	*
Cell Transmission Model	SIGNALISED INTERSECTION TRAFFIC SIGNAL 1600
cabacity K K+I	
K-1 K K+1 Wc 1 Supply	Intersection
cell p	vehicles \rightarrow phase safety
interfau freeflow ^{se} congested	Z → space Efficiency
(Fundamental Piagram) single lane	1 3 (ontrol chattagin > hall's signal
	$\frac{3}{2}$ Control strategies \rightarrow traffic signal
Supply control — traffic information travels upstr <i>iam</i> demand control — traffic information travels downstr <i>eam</i>	4
Supply-how much you can Demand - how much veh can send when	Traffic Signal
accomodate K+1 entry.	• Pre-timed signal \rightarrow fix the time, time is fixed
S_{k} Supply Curve Σ_{k} Demand Curve $K \stackrel{K+1}{\rightrightarrows} K+1$	Semi-automated signal
CK+1 CK Yoad geometry	Fully-automated signal volume more
	gran more
Pc SKH Sc SK	minor road. The major road
Freefow congested freefow congested	
J, J	
Supply and bemand at cell boundaries	vehicle demand
 For downstream boundaries, 	<u>с</u> 2
tot	1. arrival process $\begin{cases} C_{12} > 0 & downstream \\ C_{12} < 0 & upstream \end{cases}$
$S_{K+1}(t) = \begin{cases} Q_{K+1}(t)^{\text{vet}} ; S_{K+1}(t) > S_{C}, & \text{all } K+1 & \text{congested.} \\ C_{K+1} & \text{; otherwise} \end{cases}$	
	3. delay. where Ciz = Propogation velocity 4. queue length
$D_{K} = \begin{cases} Q_{K}^{\text{tot}} , P_{K+1} \leq P_{C} , \text{ free traffic in cell K} \\ C_{K} , \text{ otherwise} \end{cases}$	" queue engre)
CK Otherwise	Arrival process
,	No. of vehicles arriving during specified period of time.
 For upstream boundaries, 	
SK J TEPLACE K by K-1	I. Random Arrival
D _{K-1}] in above equs	2. Grouped Arrival
Flow through the cull boundaries Supply-how much you can accomodate.	No. of vehicles in this 3. Mixed Arrival
dimand - assume & +1 empty	St time period.
$Q_{k}^{ub} = Q_{k-1}^{down} = \min(S_{k}, D_{k-1})$	Random Arrival
	If purely random, arrival follows
$ Q_{K}^{down} = Q_{K+l} = m \dot{\nu}_{V} (s_{K+l}, D_{K}) $	→ → → poisson distribution
	headway follows exponential distribution.
Stability Analysis — wont study it ! — we go to traditional traffic engr. → come in endsem !	ubstram dawystean
	multicer automation
$\Delta t < \Delta x \qquad C = \frac{dQ}{dg} \mathcal{G} \in \mathcal{L}(0, \mathcal{G}_{max})$	
Ax varies from 100 to 150m (Section 8571 Trieber, 19105) (UI Transmission Model	>4 Km , Randam

JL

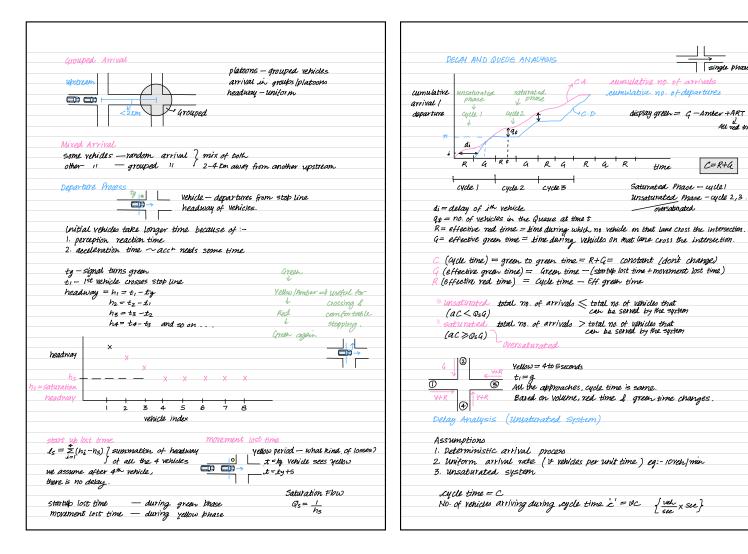
display green = G - Amber + ART

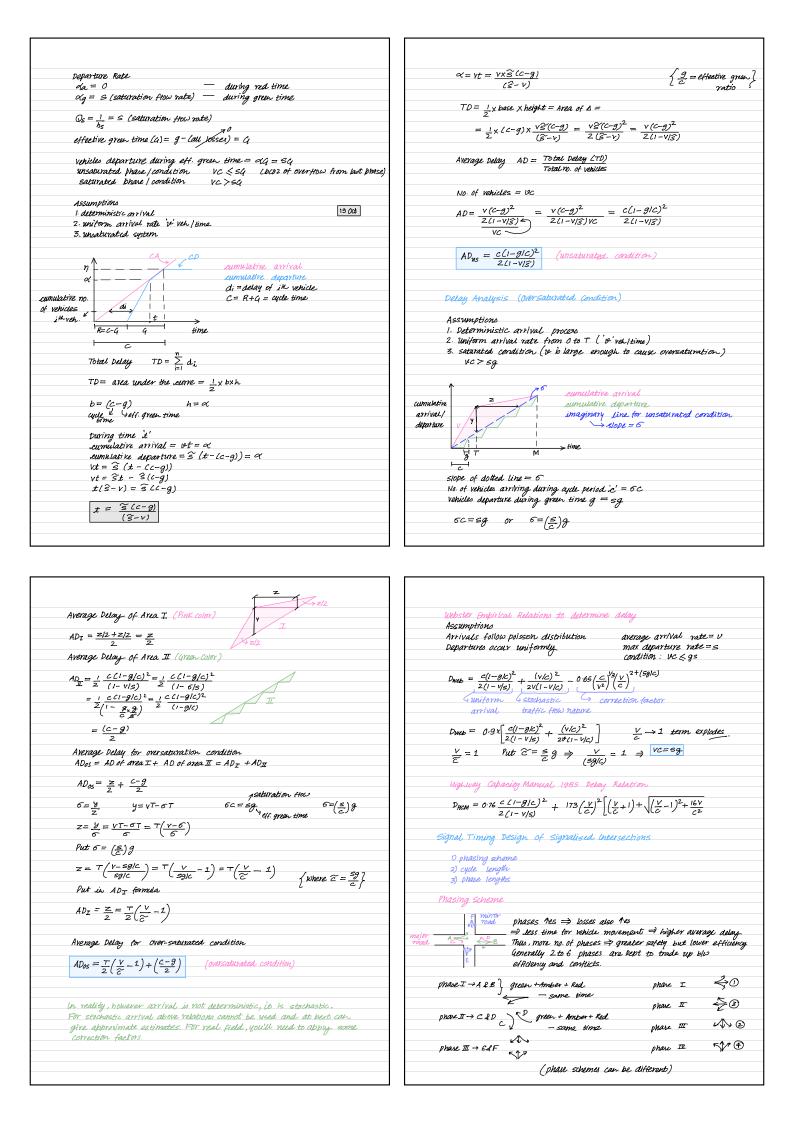
Saturated Phase - will!

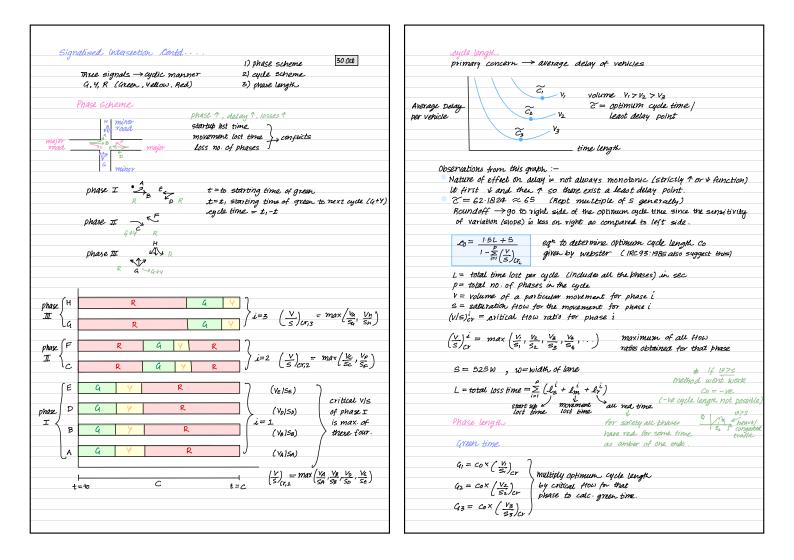
oversaturated

Unsaturated Phase - cycle 2,3 ...

cumulative no. of arrivals

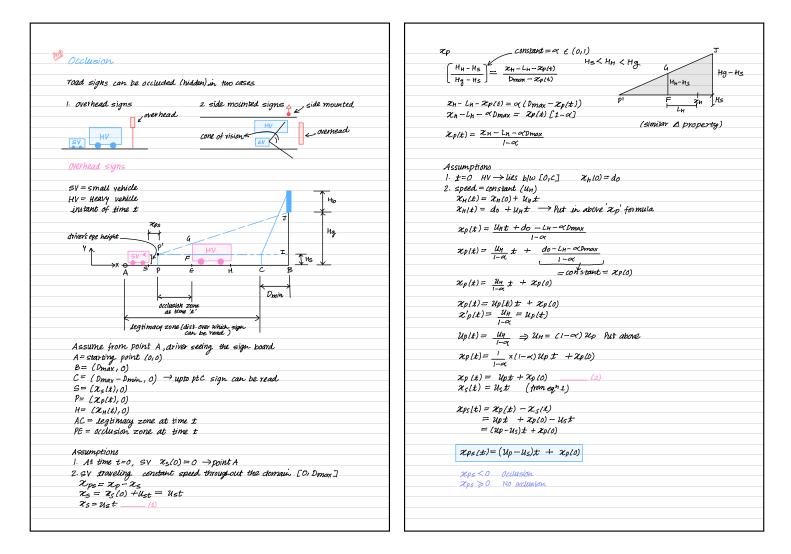

cumulative no. of departures

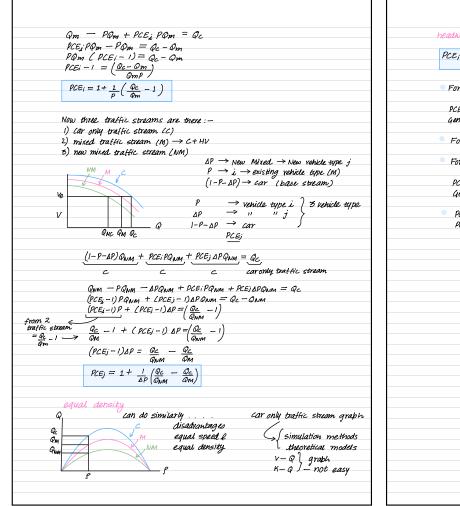

YC.D.


single phase

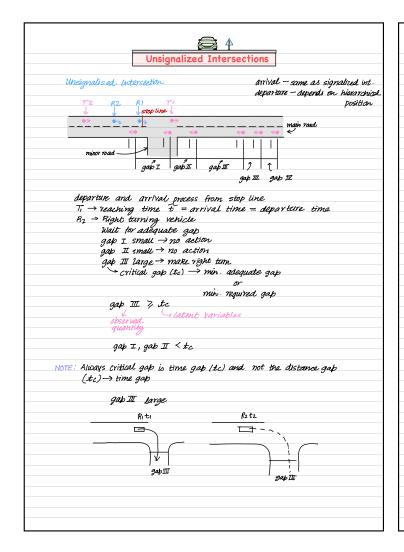
C=R+4

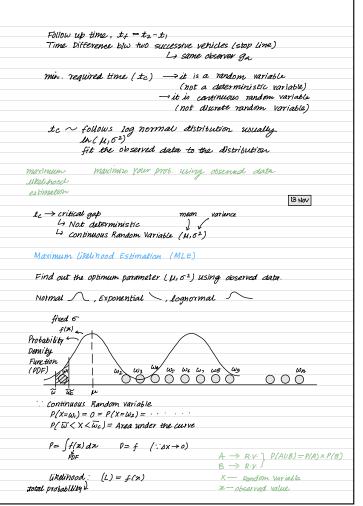
All red time




	ugh Dilemma zone	Analysis	
Amber \rightarrow two choices	<i>v</i>	•	
l. stop		\rightarrow	
2. Cross the inter	section		
$\frac{1. stop}{ds = v tr + \frac{v}{2k}}$ $\frac{ds = v tr + \frac{v}{2k}}{stopping}$ $\frac{ds = v tr + \frac{v}{2k}}{treation time}$	peea	dilem	na zone
$ds = v tr + \frac{v}{v}$	2		
stopping 2 2	comfortable decele.	ration rate	
distance reaction time			
to recogniz	e traffi c light change	to yellow	
0	0	•	
2. cross the intersection	m		
(ojo) 22	- R <ds, stop<="" td=""><td>1</td><td></td></ds,>	1	
4		L= Ungth of	venicle
Next to 🗖 🗖 🗖		w = width of	intersection
obal coordinates.		τ	
easure from there		dc 20 or 70	>
amber t	me		
$d_c = \underbrace{v_c}_{-(\omega+L)}$			
Listance bounds.	t during ambertime		
	a uning when the		
ds de	27dc	cross the intersection	
		stop	
ø <u> </u>	_ z <ds< td=""><td></td><td></td></ds<>		
o) □ □ □ → stap ∠ cross	_ z <ds< td=""><td>stop</td><td>)</td></ds<>	stop)
stop V cross	_ z <ds< td=""><td>stop dilemma zone</td><td>N</td></ds<>	stop dilemma zone	N
stop V cross dilomma zong	_ Z <ds _ ds<x<dc< td=""><td>stop dilemma zone (neither cross norstop)</td><td></td></x<dc<></ds 	stop dilemma zone (neither cross norstop)	
step 2 cross ditemma zone The minimum amber	_ Z <ds _ ds<x<dc time to remove a</x<dc </ds 	stop dilemma zone (neither cross nor stop) dilemma zone (-Cm	in)
step 2 cross ditemma zone The minimum amber	_ Z <ds _ ds<x<dc time to remove a</x<dc </ds 	stop dilemma zone (neither cross nor stop) dilemma zone (-Cm	in)
step 2 cross ditemma zone The minimum amber	_ Z <ds _ ds<x<dc time to remove a</x<dc </ds 	stop dilemma zone (neither cross nor stop) dilemma zone (-Cm	in)
$\begin{array}{c c} step & \swarrow & cross \\ \hline \\ difference \\ zeros \\ z$	$2 < d_{S}$ $d_{S} < \pi < d_{C}$ $d_{S} < \pi < d_{C}$ $d_{Herma zone}$ $d_{T} + \frac{v^{2}}{2b} \qquad \text{ for with}$	stop dilemma zone (neither cross nor stop) dilemma zone (-Cm	in)
$\begin{array}{c c} step & \swarrow & cross \\ \hline \\ difference \\ zeros \\ z$	$2 < d_{S}$ $d_{S} < \pi < d_{C}$ $d_{S} < \pi < d_{C}$ $d_{Herma zone}$ $d_{T} + \frac{v^{2}}{2b} \qquad \text{ for with}$	stop dilemma zona (neither cross nor stop) tilemma zone (-Cm sign (-ve) -> y2-y2=22 0-y2=225	in) 25
$\begin{array}{c c} step & u \\ \hline & cross \\ dilemma \\ zore \\ \hline \\ The minimum amber \\ Put A_S = A_c to ava \\ b \ Tmis - l(w+L) = V \\ \hline \\ cmis = \frac{Vt}{V} + \frac{V^2}{2bV} + \frac{V}{2bV} \end{array}$	$2 < d_{S} = 2 < d_{S} < x < d_{C}$ $d_{S} < x < d_{C}$	stop dilemma zona (neither cross nor stop) tilemma zone (-Cm sign (-ve) -> y2-y2=22 0-y2=225	in) 25
$\begin{array}{c c} step & \swarrow & cross \\ \hline \\ difference \\ zeros \\ z$	$2 < d_{S} = 2 < d_{S} < x < d_{C}$ $d_{S} < x < d_{C}$	stop dilemma zona (neither cross nor stop) tilemma zone (-Cm sign (-ve) -> y2-y2=22 0-y2=225	in)

	TRAFFIC	SIGNS	
I speed limit	110/11/10		
2. inform on im	pending changes in	road geometry	
3. reduce confusi	on thro' clear sign.	• 0	
	0		
Design Elements a			traffic sigh
1. text of the s		1. visual acuity	1. words X
2. letter and color		2. field of vision	
3. placement of	the sign	3. colour perception	3. placement
Tout of the size	100 17-1007		
Text of the sign		es pictograms (brief ter	(t anly)
in general, aun	no ien & un stape	in priving with s conter ter	- Unity)
Lattor and color.	1 Harin		
Letter and color of		(1. Ha. 1.) (- () ()	
normal vision (616)	driver> 8.5mm	(letter size) from 6m dis	tance
	duiting (A1		Wax (611)
= yoor yision a	$\frac{3}{1}$	two cases normal dri	(619)<(ase)
$\begin{pmatrix} 6\\ g \end{pmatrix} & \begin{pmatrix} 6\\ 12 \end{pmatrix}$)		(619) (6112) case 2
case 1		Case 2	(O)IW
	8 [.] Smm		smm.
₹616		× 616 6m	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6m M	9×8:5mm	• al. Ar 8:5	mm
天96 竹	9×8:5mm = 12:75mm	大 % 4	
		$\begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 $	l.
in general, <u>9</u> ×	ch letter size (mm)	(g)	
6	letter size (mm)	In general, <u>6</u> ×0	ι
		* 9	-distance (m)
			2 NOV
Lateral Placem	ent A	20° cone	ZNOV
Lateral Placem	\square	1	
Lateral Placem	20° come of vision	(20°))
Lateral Placem	20° come of vision	1)
Lateral Placem	20° come of vision	(20°))
Lateral Placem	20° Cone of vision comfortable	(20°))
Lateral Placem	20° cone of vision comfortable	(20°))
Lateral Placem	20° cone of vision comfortable	(20°))
Lateral Placem	20° Cone of vision comfortable	(20°) to the ariver cone of vi) isian
Lateral Placem	20° Cone of Vision comfortable	(20°)) isian
Longitudinal	20° cone of vision comfortable	(20°) to the ariver cone of vi) isian
Longitudinal	20° Cone of Vision comfortable	(20°) to the ariver cone of vi) isian
Longitudinal	20° Cone of Vision comfortable	(20°) to the ariver cone of vi) isian




CASES FOR OCCLUSION	[A,C]
under UN Verstand	$[0, \tau]$
Case 1: Up 7, Ns , Xp(0) >,0	T = Dmax - Dm
$\chi_{ps(lt)} = (+ve) + (+ve) = +ve$	$\mathcal{U}_{\mathcal{S}}$
Not occluded	
(axe 2: Up < Us , Xp(0) 70	、
$\mathcal{X}_{ps(x)} = (-ve) + (+ve)$	0 +ve
initially not occluded.	- ve
After some point of time, orcl	usion nappens.
(ase 3: Up 7, Us Rp<0	
$\mathcal{X}_{ps}(t) = (+re) + (-re)$	0+ve
Initially occlusion.	/ -ve
After some point of time, no	ot occluded.
$\frac{Care 4: up \langle U_S \rangle}{\chi_{pS}(t) = (-ve) + (-ve)}$	
Always occluded.	
case 2 not occluded / occluded) Put Ync = ()
case 4 occluded / not occluded	(\rightarrow) row $hps=0$
$\chi_{ps}(t) = (\mathcal{U}_p - \mathcal{U}_s)t + \chi_p(0)$	
$(\mathcal{U}_{s} - \mathcal{U}_{p}) t = \mathcal{X}_{p(0)}$	$\frac{t_c}{u_s - u_p} = \frac{\chi_p(o)}{u_s - u_p}$
	Us-Up
ty = time required to read the sig	m
ta = time available to read the si	gh
Case ta=T	
Case 2 ta=tc o tc t	
Case 3 ta=T-tc 0 tc T	
Case 4 ta=0	
taztr -> read the sign.	
$ta possible to$	read the sign
Take alde a surfact stress of a loss	
For side mounted signs (won't c	ome in Exam)
	side mounted sign
	three lines come
	frile time come
	-
occlusion Dmi	~- due to shoulder rotation
occuiskon zone	

Passenger car Equivalents	9 NOV
The factor	
c c equating T	
Different traffic stream	
Traffic Stream Characteristics	
1. speed V	
2. How Q	
3. density f	
Factors	
1. 1. of a particular vehicle type (i) in traf	fic stream \rightarrow HV
2. geometry of the road	
ų .	ales an its another indian to a st
These two factors (:1+geometry) affect the traffic s Equivalents — equate different traffic streams ba	
equivalence — equale arterine traffic streams ba	sea on their characteristics.
1) equal speed 7	
2) equal density PCE criteria	as
3) equal delay (intersection)	
4) equal headway	
equal speed	
	assumed same speed
1) car only traffic stream (c)	of car and heavy vehicle
2) mixed traffic stream (M) \rightarrow C+HV	Q
	4
Vg M C	
ve Vf = max speed	$\uparrow \uparrow \uparrow$
V V	speed & speed &
ρ	speed v speed v as QT as Q v
Qm Qc	
M: $\rho \rightarrow proportion of HV$	
$1-\rho \rightarrow proportion of car$	
PCE _i (i=HV)	
PCE _i (i=HV) Wixed traffic stream	
$PCE_{i} (i = Hv)$ $History (i - P) Q_{m} + PCE_{i} PQ_{m} = Q_{c}$	
PCE _i (i=HV) Wixed traffic stream	

headway mei	nod		
		time headway of	Vehicle type i. Car (base vehicle)
For two what	elers PCE _{TW} =	h → smaller hc → Larger	hτw <hc< td=""></hc<>
PCETW <1			
Generally, PC	E _{TW} = 0.5 ⇒ 2 two	n wheelers equivalen	t to 1 car
	$PCE_c = \frac{\overline{hc}}{\overline{hc}} = 1$		
For heavy	vehicles PCE _{HV} =	<u>h</u> HV → larger hc → smaller	hHV 7 hc
PCE _{HV} >1			
Generally,	PCEbruck = 2·5 ⇒	1 Truck= 2-5 <i>Co</i>	ar
PCEtu <	PCEC < PCEHV		
PCETW <	1 < PCEHV		

 $x \rightarrow i i d \rightarrow$ independent and identically distributed $L = \prod_{i=1}^{n} P(x_i = \omega_i)$ sometime pdf cdf $\mathcal{L} = \frac{n}{\sum_{i=1}^{n} f(x_i = \omega_i)}$ /lipelihood low 60 likelino od L even it one of P is 0 then also it doesn't matter + position of height of the distribution $L = \prod_{i=1}^{n} f(\boldsymbol{x} - \boldsymbol{x}_i(\boldsymbol{\mu}))$ $\frac{\partial L}{\partial t} = 0$ Discrete → only probability mass functions
 Continuous → Density function 7 depends on your problem
 → Probability function based on that you're to design. skinny $\frac{\partial L}{\partial h} = 0$ medium $\frac{\partial L}{\partial 6} = 0$ large Instead of likelihood we go to log likelihood because it is easy. $\mathcal{L} = \frac{n}{\prod_{i=1}^{n} f(X_i = \omega_i)}$ Tax. (11,5) Won't change ____ $LL = \sum_{i=1}^{n} f(x_i = \omega_i)$ log → monotonically Asing function.

	mean arrival rate
Vehide Arrival \rightarrow poisson distribution.	(a)
X,, X ₂ , X ₃ ,	
$X_1, X_2, X_3, \ldots, X_n$ $\downarrow \downarrow \downarrow \qquad \downarrow$ n_1, n_2, n_3 n_n	
$P(x_1 = n_1) = \frac{e^{-\lambda} \lambda^{z_1}}{z_1}$	Poisson -> Discrete Distribution
$P(x_i = n_i) = \frac{c_i}{2c_i}$	
-2.2	
$P(x_2 = n_2) = \frac{e^{-\lambda} \lambda^{\alpha_2}}{2}$	
- <i>X</i> ₂ !	
$P(x_n = n_n) = \frac{e^{-\lambda} \lambda^{2_n}}{Z_{n}}$	
$\mathcal{X}_{n!} = \mathcal{X}_{n!}$	
$L = P(X_1 = z_1) \times P(X_2 = z_2) \times P(X_3 = z_3)$	X · · · × P(Xn=Xn)
= -2 221 -2 222	e-222
$= \frac{e^{-\lambda} \lambda^{\mathbf{z}_1}}{\mathbf{z}_1} \frac{e^{-\lambda} \lambda^{\mathbf{z}_2}}{\mathbf{z}_2}$	$\frac{e^{-\lambda}\partial^{2n}}{\lambda_n}$
n ~~	
$\mathcal{L} = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{\lambda_i}}{\lambda_i}$	
2. Z.	
$h = h \left(\frac{h}{h} e^{-\lambda} a^{2i} \right)$	
$LL = \ln \left(\frac{h}{i = 1} \frac{e^{-\lambda} \lambda^{\lambda i}}{\lambda_{i}!} \right)$	
$= \sum_{i=1}^{n} \left[\ln(e^{-\lambda}) + \ln(\lambda^{\mathbf{x}_i}) - \ln(\mathbf{x}_i) \right]$	(به ا
	5
$=\sum_{i=1}^{n} (-\lambda) + \sum_{i=1}^{n} z_i \ln(\lambda) - \sum_{i=1}^{n} \mu$	n (Xi!)
$\mathcal{L} = -n\lambda + \ln(\lambda) \sum_{i=1}^{n} z_i - \sum_{i=1}^{n}$	A. / A
$\frac{1}{1} = -n_{A} + \frac{3n(a)}{2} \frac{2}{a} \frac{k_{i}}{i} = \frac{2}{i}$	lh(Xi!)
$\frac{d\mathcal{U}}{d\lambda} = -n + \frac{\Sigma \varkappa}{\lambda} = 0$	
da a	
411 a	
$\frac{dU}{d\lambda} = 0 \qquad -n + \frac{\sum z_i}{\lambda} = 0$	biased estimator
	unpiased estimator
$\lambda = \left(\frac{\sum z_i}{n}\right) \qquad n = \frac{\sum z_i}{2}$	will in the second second
$\left(\frac{n}{n}\right)$ A	

$t_c \rightarrow continuous RY$	
1) driver \rightarrow consistent	Þ
accepted gap \rightarrow one	
rejected gap \rightarrow many	
rejected gabs(sec) ac	cupted gaps(sec)
5]	10 } only one gap
Z (many	ic formy one gap
$8 \qquad (\rightarrow max = 8 sec$	
4 /	
loomer desire despited - t	as privated asks
Assume always Accepted gap	s > rejected gaps
critical gap(tc)	
$t_c > Rejected gap (Rn)$	
$t_{c} \leq Accepted gap (An)$	P(Rn < tc ≤ An) { single pt prob.=
	$= P(Rn \leq tc \leq An)$
$t_c \sim N(H, \sigma^2)$ Normal	1 Distribution
AC' VICTIO-) NOTIMA	t_Distripution_ tc→iid_
$P(Rn \leq tc \leq An)$	
$n \rightarrow observations$	
$X_d X_2 X_n$	
Ar Az An	
Ri Rz Rn	
$L = \frac{n}{n+1} P(R_i \leq d_c \leq A_i)$	
i=,	
all a all -	
$\frac{\partial LL}{\partial H} = 0 \qquad \frac{\partial LL}{\partial G} = 0$	
0H 06	
он де	
<i>0H ∂6</i>	
011 86	Follow rules 7 Ethics and Integrity

Aman Kumar Singh \backslash IITK