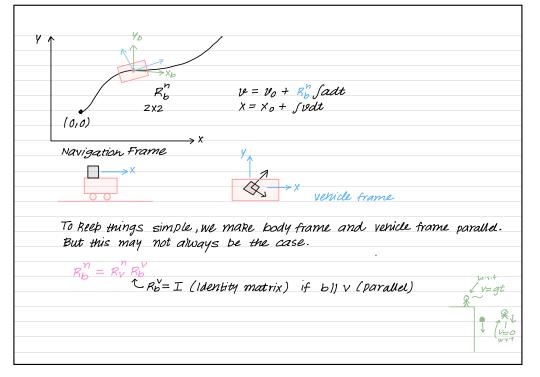
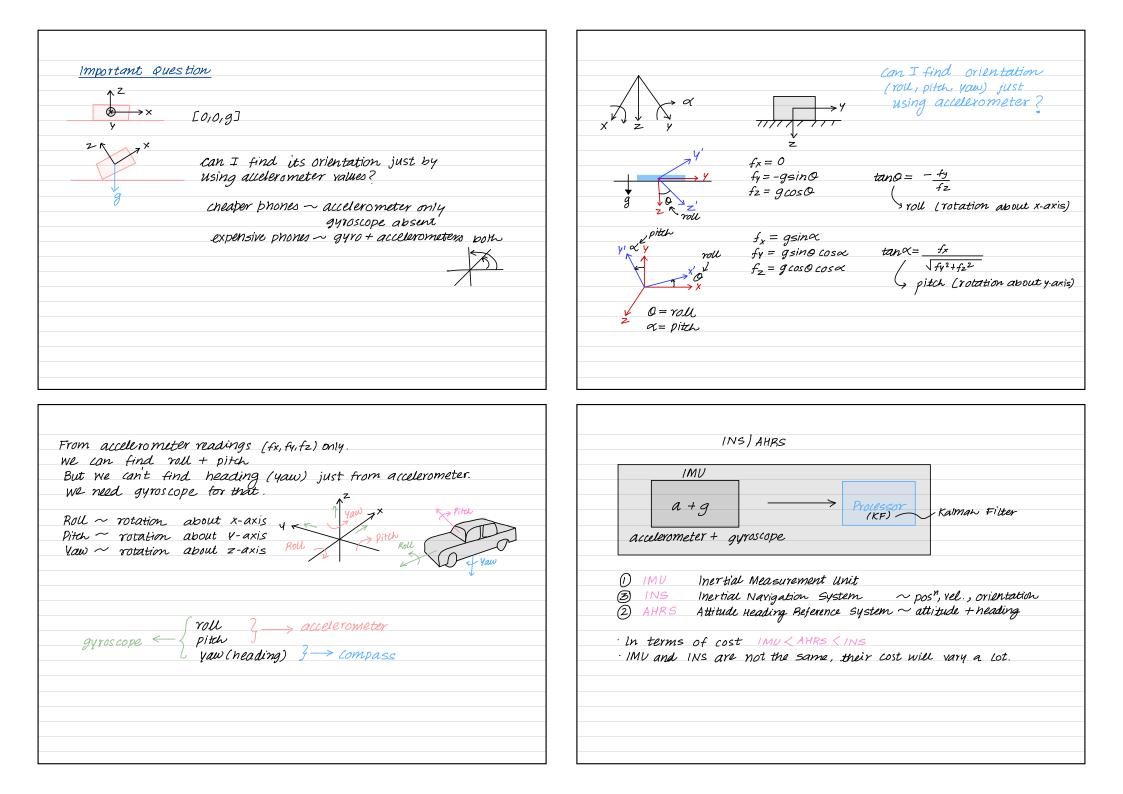
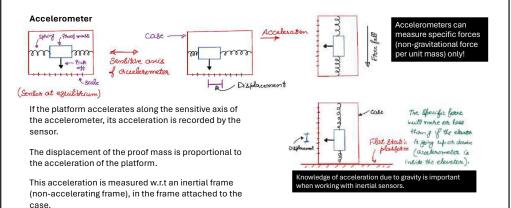

Sen	ISORS PART
Inertial sensors	
eg: auto-rotate in your:	smart phone, inertial (sense votation,
cost can vary from hund	red to crores.
Inertial sensors have	
,	
· Gyroscope (zaxis)	• Barometer } -> Depending • Processor upon cost
· Accelerometer (3axis)	· Processor upon cost
· Magnetometer (3axis)	
· To define an object in	space we need position + orientation
	, doesn't tell you orientation.
We use inertial sensor	s along with it to get orientation.
let us try to understand	d now would we do navigation.
	UPS became operational in 1990s,
	do navigation before 4PS.


5nd - sem	40.1.		
labs (Attendance)	25%	Lab 2	PM to SPM
Puiz (3)	15%	Q Var	un Lab
Home Assignment	201		
I — Sensors	(2WeeRs)		
II - Mathematics	(3 Weeks)~	use for positi	ioning + navigation
II — Applications	(2 weers)		0 0
	a road, wa inside a tuni track the pa	nel \sim gps wo	nt work
		Ro	ad

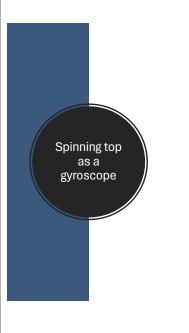
Pead Reckoni	ng	1. find change in position
	0	2. add to prev. position to get
a units	e units	current position
× → ×	* → ×	3. 20 ~ heading only
(0,0) bu	nits d. units	3D~ three orientation (attitude)
×	<u>→ </u>	can find new location if
	units	I know the initial location
У 		& can also trace the path back.
n di	2 2	1 (AsinO, AcosO)
dometer 0	T a	2 $(dsin0+d_2, dcos0)$
+ _7d	, az	$3 (dsin0 + d_2, dcos0 - d_3)$
ompass	$3 \rightarrow X$	
Lar	•	
	~ measured by	
• distances	-	odometer, it measures distances
	by counting	the rotations of a wheel
	tion	



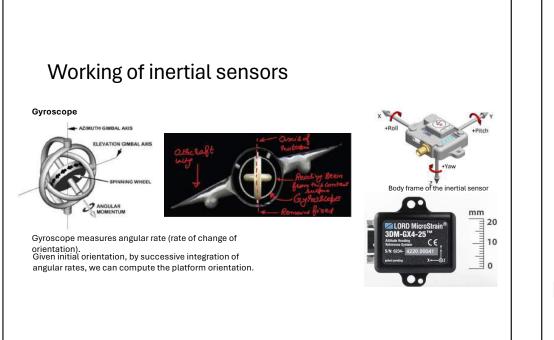
I need to know — heading in a I need to know — roll, pitch,	
L,	neading)
2D case	3D case
B = [configure =]	$R_{-}=\int -$
$R_2 = \int (0s\theta \sin \alpha)$	
	$R_{3} = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix}_{3 \times 3}$
heading ~ find using compass	C 1
or	O roll
using gyroscope	O roll pitch
0 0 , 1	w yaw (heading)
la a an ere T with instance	
Un a 2D case I can't just use position using dead reckoning ~1	accelerometer to find my
projetion using alad rectoning ~1	reed heading also.

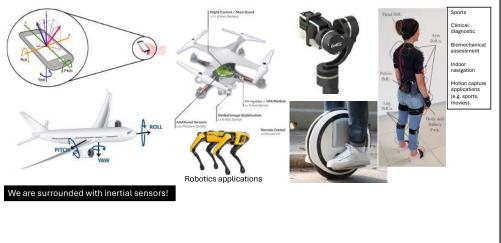

1. The resultant posit	ion of α acceleration applied
the mass w.r.t. ca	
2. The exception — a	celleration due to gravitational force.
Gravitation acts on	proof mass directly, not via the springs
and applies the sar	ne acceleration to all components of the
Allelerometer, so th	pere is no relative motion of mass with case
3. All accelerometer	sense specific force, the non-gravitational
acceleration, not t	he total acceleration.
specific force = no.	n-gravitational force per unit mass on a
	dy sensed wrt an inertial frame.

Spin axis Gyroscope 44YOSCOPE Spinning Mass 44105 Foucault Pendulum · conservation of angular momentum 1. Experiment by a French physicist Leon Foucault in 1851. 2. A long and heavy pendulum suspended from a high point ' Maintains its axis as long as mass is spinning Rotor Gimbal 3. Used to measure rotation of earth. · Gimbals attached to spin mass to ensure that 4. Later the first gyroscope designed based on this principle. rotation of outer body is seperate from rotation of this spin mass. 1' WSINA 1411 ceiling · spin mass gyros ~ not used these days ~ bulky and expensive But it was the first gyroscope. Wsind= 11.25° (Paris) GYYOSCODE, 1. Gyroscope measures angular rate (rate of change of orientation) 2= 20ngitude 2. given initial coordinates, by successive integration of angular Ring of pegs 24 hours $\longrightarrow 360^{\circ}$ rates, we can compute the platform orientation. \Rightarrow 15° per hour (at poles) MEMS Based Accelerometers ~ No spring mass system ~ cheap For foucault (in Paris, France) MEMS Based Gyroscopes ~ No spin mass system ~ bit expensive $\approx 11.25^{\circ}$ per hour accelerometer ~ cheap ~ found in all phones For equator, $w \le n \ge 0$ gyros ~ expensive ~ not found in cheap phones 0 $(\omega_x, \omega_y, \omega_z)$ MEMS based gyroscope ~ put on table ~ output? MEMS Based Gyroscope I. No spinning mass system It will give you rotation of the earth because body frame is 2. Very very small, cheap and easy to manufacture now fixed to the earth, it is measuring rotation of earth wirt. inertial frame and wirt inertial frame earth is undergoing 3. But they are not very stable ~ errors are varying and have to be corrected with some mathematical model. rotation. gyro measure rotation of earth 4. Original gyros directly give you angular rate. But these modern gyros are vague. 5. They measure rate of change of orientation (angular rate) lattitude of body frame wit an inertial frame in O per second or radisc If I was able to take foucault principle gyroscope and put $0 = 0_0 + \int w dt$ have errors, on integrating errors propogate it on a car, the car is also undergoing rotation. That gyroscope measure combined rotation of earth and car (body) $v = V_0 + R_p^n \int a dt$ Assume noise is low and air drag is low. $R_b^n w_{ib}^n \sim angular$ rate of body frame w.r.t. inertial frame If noise is more than earth's rotation you won't be able to observe w' because noise is very high. This is what happens with MEMS based sensors, they have lot of noise and they are not able to measure earth's rotation.


MEMS-based gyros	scope \sim consumer	grade gyroscope-	we use
Resonant Gper-0	ptic gyroscope CRF	=0G)	
Rina LACON AUTOSC	p_{R} (R(C))		
Ring Laser gyrosco Micro-optic gyrosc	(AAA)		
MUCIO = OPLIC GUIDS	lope (MOG)		

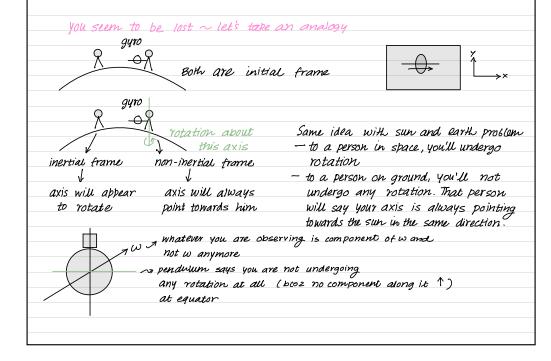
Working of inertial sensors


Foucault Pendulum



Aman Kumar Singh \ IITK

Inertial sensors



Lab Doubts (Inertial Sensors in Everyday Life)	
$\frac{800000}{3600} = 222.22$ [X y z] axis of the smartphone ~ Right	
EO, O, g] ~ g upward ~ why upward? g is acting downward nertial 6- mg [~] EO, O, g]	Body frame w.r.t. inertial frame
Inertial planet)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g g t kr
wirt Ait is g This condition	is analogous to that.

	Free fall accellerometer reading = 0
mg g	
	\gg sensor will measure this $\sim a collerometer reading = N = +g 1 upward$
mg	accelerometer will only measure non-gravitational toru (sensor)
L accelero	Imeter ~ spring mass system ?
L gyrosc	ope ~ spring mass system (ope ~ spinning top system (

What will be axis of rotation of gyroscope after few hours when sun would appear at new position due to rotation of earth? 1 or 2	earth
ti 2 Ans: 2 / It will always point towards sun.	
Doesn't pother about eavily's votation.	sun's p
1 (72) 4	
gyro , ensure its movement is	t_1 t_2
seperate from earth	1 2
earth (using gimbals)	sun 🚽 sun 🖣
YOU are standing on earth, gyroscope axis of rotation is along 1 ie	1 (12)
initial position of sun wirt earth. I ensure rotation of spinning	gy10 t, t
mass is superate from earth by using Gimbals.	
5	earth /
After few hours, earth will undergo rotation so sun will	
appear at position 2.	diagram w.r.t. diagram
Now the axis along which gyroscope sensor will undergo	person on ground person i
rotation will point towards 1 or 2 2	
lt should point towards 2 (pink)	

	🔾 sun's initial position
(earth)	
suns j	position after few hours due to earth's rotation
t_1 t_2	
2	Axis always point towards sun.
sun sun	It does not bother about rotation
	of earth. So by measuring its change
1 (72)	I can measure rotation of earth
1470 t,	tz assuming my sensor have low noise
	(noise is not so significant)
earth /	
liagram w.r.t. diagram	
person on ground person i	n space/sun
ERRORS IN INERTIAL S	ENSORS
$a = a_r + s_i + \epsilon$	Systematic trrors $\rightarrow y = f(x)$

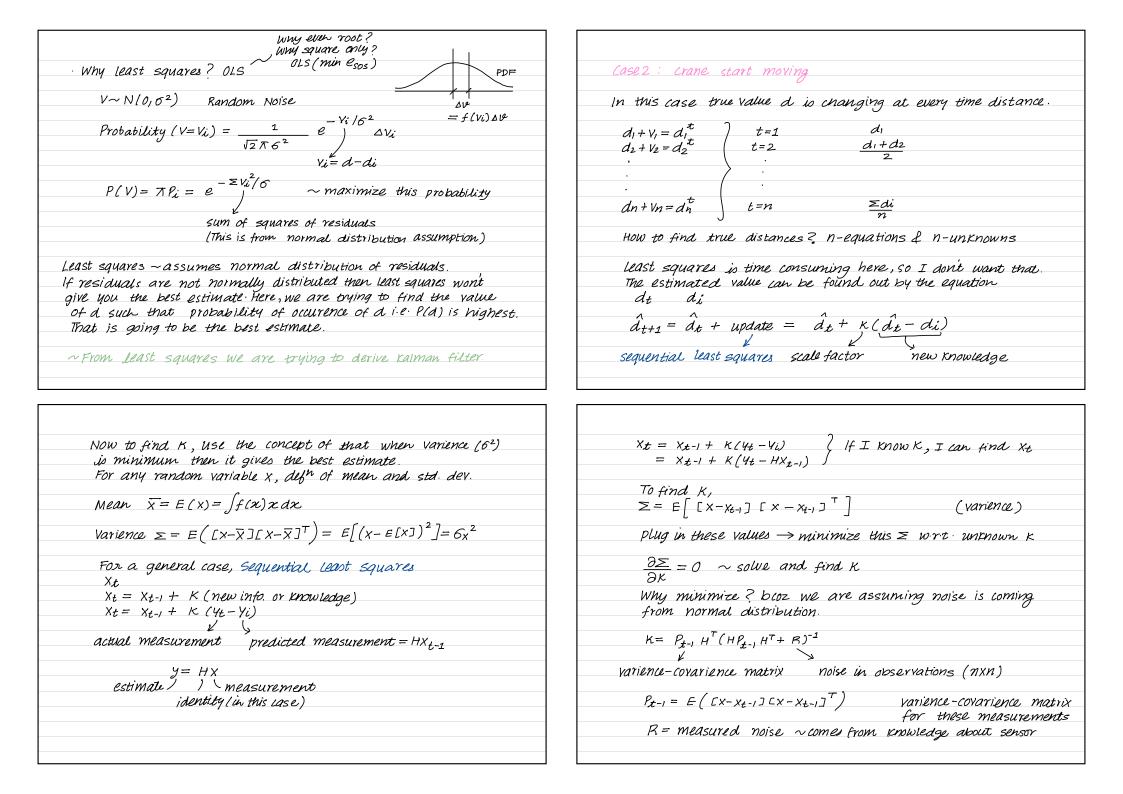
a=a _t +s, + c	Systematic Errors $\rightarrow y = f(x)$
$W = W_T + S_2 + \mathcal{E}$	Random Errors —> stochastic
ystematic errors \sim 10	can write mathematical model y=f(n)
andom errors ~1 can	write some kind of stochastic model
ias ~ systematic error	
yalue	scale random factor noise Error
$\delta a = \frac{b}{b} + Ra + \frac{c}{c}$	Manufacturer tells
$(u = ht + B / v - v_a) + t$	You these values
$\delta_V = bt + R \frac{(v - V_0)_x t}{x}$	ignore this term due to error

	Drift - people specity this
/	After 1 hour, drift should be less than 1 km (some value)
neasured	$Say, \frac{1}{2}bt^2 < 1000 \Rightarrow b < 10^{-4} m s for t = 1 nour$
	If b>10 ⁻⁴ m]s then drift will be more than 1Km.
Ь	
1	
true	
The source of	and to accelerate the second second
	grade accelerometers ~ Drift 3mg
	$p^{-3} \times 10 = 3 \times 10^{-2} \text{m/s}^2$
	just after 5 minutes
Fly for Inou	r \sim max error = 1 km \sim for aircraft this much
	is not a large error
To taccura	acy we can combine gyroscope.
How to add	effect of gyroscope here?

$a = \frac{\kappa \chi}{m}$
$0=0 \sim vanishes$
6 uphill $a = \frac{Fx}{m} + gsinO$
$\bigwedge 0 \qquad 0 \sim get from guroscope$
$\dot{O} = \dot{O}_{T} + b$ (gyroscope)
(bias)
$\delta o = bt$ (error in o)
$a=a_{T}+b+ka+t+gsinO$
$\delta a = b + Ra + \epsilon + g bg t$
$\delta_{V} = bt + R[V-V_0] + \frac{9}{2}b_g t^2$ assume sin(0=0 (0 small)
$\delta_{x} = \frac{bt^{2}}{2} + k[r - k_{0}]t + \frac{g}{6}bgt^{3}$
manufacturer do calibration \sim to correct for errors

	gravity value also here ~ magnity error + cube Power 	
$\frac{1}{2}b_1t^2+($	$\frac{9}{6} b_g t^3 \times 1000$ $E \times , Y, Sa, Sg $	
	Calibration ~ to estimate errors feedback mechanism to correc for errors. I. Position, velocity, error for accele error for gynoscope feedback fed back to correct them.	
to find	error? need to find absolute system \sim GPS system start diverging	,
	2 errors assumed constant but they vary with time	
APS 0	bservations {~ time blw l&2 small ~ good estimate [~ 11 11 11 11 large ~ can't estimate	, 2 errors
Values	small ~ drift nappens slowly MATLAB code ~ Lab2~e	worldrift

Bias I. fixed				
2. turn	on bias ~rema			
_ ·	-		I get a new bi	as
3. In	run bias~bias	is not stuck	(bias change)	
nanufactures	ZIX			
noise \sim temp	erature depende	ent \sim not var	randomly~r.	nodels
				_
	say ~ Nothing			
	we cannot me			
	red cars while			
	know all red a			
Position	and trajecto	ry I can es	timate but	
I doi	it really know			

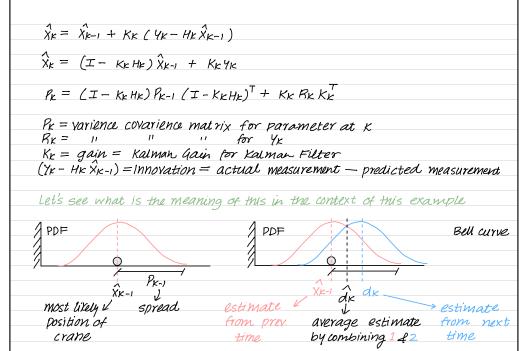

systematic random	
7 7	Bias $\pm \alpha$ ~ fixed part
$a = a_{\tau} + () + \epsilon$	Bias instability $\pm \beta \sim dynamic part \sim manufacturer can onestimate std dev. examples$
Last class we looked what happens if we don't model these errors	bias you have to estimat
$S_{\mathcal{R}} = \frac{1}{2} b_a t^2 + \frac{1}{2} g b_a t^3$	Fixed
2 6 0 0 (Irm (Say)	ti bf bi ~ turn off instrument & turn on again
$\frac{1}{2}b_{a}t^{2}+1.g_{b}gt^{3} < 1000$ $\frac{1}{2}b_{a}t^{2}+1.g_{b}gt^{3} < 1000$ (some three hold)	t_2 bf $b_2 \sim every$ time ti turn off, turn-on bias
2 6 (some threshold)	tz bf bz get changed but remain fixed throughour
Plug $t=3600$ sec (Inour) ~ upper bound on b	
	$b_t = b + b_D$
	bt f
Sr Bias itself is also not constt	at time Dynamic part
Bias also vary w.r.t. time	t fixed part comes from ±B
	1 (bias instabil
	$b_t = b_{t-1} + E$ random noise $E \sim N(0, 6^2)$
, Fixed : remains fix once turn on turn on bias	. This is true for both accelerometer and gyroscope
Bias fixed bias	Initial bias ~ from mean of still observation for x' time
Dynamic: vary with time	Bias is also along X, Y, Z~ three axis
Scale Factor Scale factor ~ either scope > 1 or < 1 M	
M Scale factor ~ either scope > 1 or < 1 $b_{M} = K b_{M}$ (people happy with this estimate)	
M Scale factor ~ either scope > 1 or < 1 $b_{M} = K b_{M}$ (people happy with this estimate) α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
M Scale factor ~ either scope > 1 or < 1 $b_{M} = K b_{M}$ (people happy with this estimate)	$f_{4} = B_{1} + B_{2} + a_{4} + a_{ctual} a_{xis} \text{ where you apply actual } a_{xis} + a_{2} + a_{2$
$M \qquad \qquad$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$M \qquad \qquad$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$M \qquad \qquad$	$f_{4} = B_{1} + B_{2} + a_{4} + a_{ctual} a_{xis} \text{ where you apply actual } a_{xis} + a_{2} + a_{2$
$M \qquad \qquad$	$f_{i} = \begin{bmatrix} B_{i} & 1 & B_{2} & a_{i} \\ f_{z} & V_{i} & Y_{2} & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ $
$M \qquad \qquad$	$f_{y} = B_{1} 1 B_{2} a_{y} actual axis where you apply $
$M \qquad \qquad$	$f_{4} = B_{1} 1 B_{2} a_{4} actual axis where you apply ac f_{2} Y_{1} Y_{2} 1 a_{2} components of ax, a_{4}, a_{2} i i j components of ax, a_{4}, a_{2} i i j components of ax, a_{4}, a_{2} i i j conss coupling matrix \pm I if no cross couplingmatrix \pm I if cross couplingpeople often combine scaling + cross coupling into one matrixf_{4} = B_{1} S_{2} B_{2} a_{4} f_{2} Y_{1} Y_{2} S_{3} a_{2}$
$M \qquad \qquad$	$f_{y} = B_{i} + B_{2} + B_{2} + A_{2} + A_{2$
$M \qquad \qquad$	$f_{y} = B_{1} + B_{2} + B_{2} + B_{3} + B_{2} + B_{3} + B_{2} + B_{3} + B_{2} + B_{3} + B_{3$
$M \qquad \qquad$	$f_{y} = B_{1} + B_{2} + B_{2} + B_{3} + B_{2} + B_{3} + B_{2} + B_{3} + B_{2} + B_{3} + B_{3$
$M \qquad \qquad$	$f_{y} = B_{i} + B_{2} + B_{2$
$M \qquad \qquad$	$f_{y} = B_{i} + B_{2} + B_{2$
$M \qquad \qquad$	$f_{y} = B_{i} + B_{2} + B_{2$

so error due to Mam gets Vanished in model $a_{M} = a_{T} + b + \epsilon ~ most people use this model they don't worry about scaling + cross coupling and assume manufacturer removed that by calibration. Now, how to choose 6 =? Random Walk 1. velocity random walk ~ for accelerometer 2. angle random walk ~ for gyroscope VRW~ m]s] vs ARW ~ degree or radian per Jnour \delta = \delta_{T} + \epsilonO_{I} = O_{0} + \delta_{A}t + \epsilon_{A}t$		ally do calibration ~ to remove Mam
about scaling + cross coupling and assume manufacturer removed that by calibration. NOW, how to choose $6=?$ Random Walk 1. velocity random walk ~ for accelerometer 2. angle random walk ~ for gyroscope VRW~ mls/ $\sqrt{5}$ ARW~ degree or radian per Jhour $\delta = \delta_{\tau} + \epsilon$ $\delta_1 = \delta_0 + \delta_0 t + \epsilon_0 t$	so error due to	Mam gets vanished in model
about scaling + cross coupling and assume manufacturer removed that by calibration. NOW, how to choose $6=?$ Random Walk 1. velocity random walk ~ for accelerometer 2. angle random walk ~ for gyroscope VRW~ mls/ $\sqrt{5}$ ARW~ degree or radian per Jhour $\delta = \delta_{\tau} + \epsilon$ $\delta_1 = \delta_0 + \delta_0 t + \epsilon_0 t$	$a_M = a_T + b + b_T$	e ~ most people use this model they don't worry
$manufacturer removed that by calibration.$ Now, how to choose $6=?$ Random Walk $l \text{ velocity random Walk} \sim for accelerometer$ $2. \text{ angle random Walk} \sim for gyroscope$ $VRW \sim m s \sqrt{s}$ $ARW \sim degree \text{ or radian per four}$ $\hat{\phi} = \hat{\phi}_{\tau} + \epsilon$ $\phi_{l} = \phi_{0} + \phi_{0}t + \epsilon \Delta b$		
Random Walk 1. velocity random walk ~ for accelerometer 2. angle random walk ~ for gyroscope $VRW \sim m s \sqrt{s}$ $ARW \sim degree or radian per \int hour$ $\hat{o} = \hat{o}_{\tau} + \epsilon$ $o_{l} = o_{0} + \hat{o} \Delta t + \epsilon \Delta b$		manufacturer removed that by calibration.
1. velocity random walk ~ for accelerometer 2. angle random walk ~ for gyroscope $VRW \sim m s \sqrt{s}$ $ARW \sim degree or radian per frour \dot{\phi} = \dot{\phi}_{\tau} + \epsilon\phi_{I} = \phi_{0} + \dot{\phi}At + \epsilon \Delta b$	NOW, how to cha	use $6=?$
2. angle random walk $\sim for gyroscope$ $VRW \sim m s \sqrt{s}$ $ARW \sim degree or radian per [hour] \mathring{o} = \mathring{o}_{\tau} + \epsilon\mathring{o}_{l} = \mathscr{o}_{0} + \mathring{o}At + \epsilon \Delta t$	Random Walk	
$VRW \sim m s \sqrt{s}$ $ARW \sim degree \text{ or radian per } nour$ $\delta = \delta_{\tau} + \epsilon$ $\delta_{l} = \delta_{0} + \delta_{0}t + \epsilon_{0}t$	1. velocity rando	m walk \sim for accelerometer
$ARW \sim degree \text{ or radian per } \int hour$ $\hat{\phi} = \hat{\phi}_{\tau} + \epsilon$ $\phi_{l} = \phi_{0} + \phi_{\Delta}t + \epsilon_{\Delta}t$	2. angle rando	m walk \sim for gyroscope
$\dot{\mathcal{O}} = \dot{\mathcal{O}}_{\tau} + \epsilon$ $\mathcal{O}_{l} = \mathcal{O}_{0} + \dot{\mathcal{O}}_{\Delta}t + \epsilon \Delta \epsilon$	VRW~ m/s/vs	
$O_1 = O_0 + O_A t + E_A b$	ARW~ degree or	radian per nour
$O_1 = O_0 + O_A t + E_A b$	$\dot{O} = \dot{O}_{\tau} + \epsilon$	
$Q_2 = Q_1 + Q\Delta t + C\Delta t$	$Q_1 = Q_0 + \dot{Q} \Delta t$	+ <i>€</i> Δ <i>b</i>
	$Q_2 = Q_1 + Q\Delta t$	+ EAt
	,	

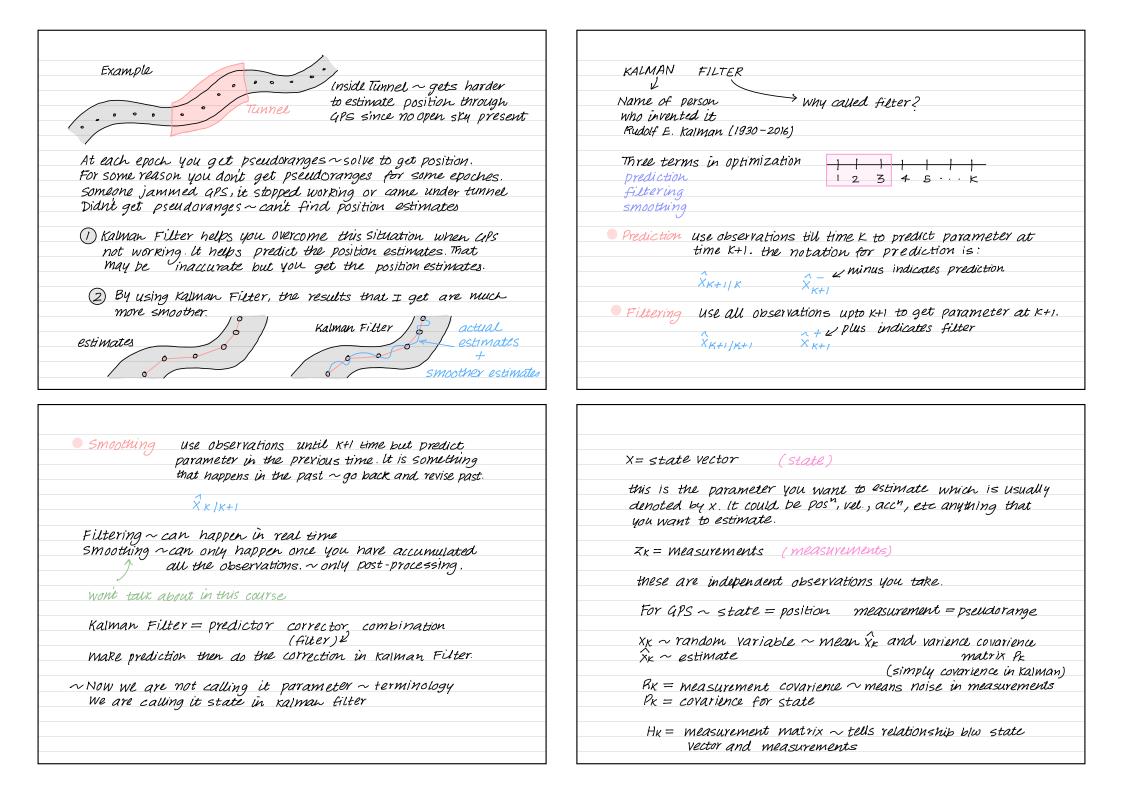
			mat availall
	urades		(US only)
1.	MEMS	cost les	↑ RLQV)
	Tactical	performance tes	error tes / FOC 24
3.	Marins	if you are able <	missile, fighter jet (USA)
		be rich :	ll You can't buy legally they won't sell you.
iyros	scope is n	•	hips ~by mlasuring larthis rotatio. tic fields unlike compass ~ hips.

least Squares	and sequential least squares
ΙΜυ Ρ	This entire setup is INS AHRS.
IMU (called ,	IMV only) Ure the distance to the rehicle from observation
	isy — the noise is coming from random error
	BLUE (Best Linear Unbiased Estimator)

New astance	$\hat{d} = \underline{\geq di}$	
	71	
• If after every will be weighte	1 hour, the noise d.	e is changing, the estimation
estimated â	$= \sum W_i d_i$	When $n \rightarrow \infty$
	Σw_{i}	à approaches true value
you the best		t the weighted average gives
$V_i + d_i = d$	$\frac{\partial R}{\partial x} V = A X - A X $	L
•	X=[d]	7 . [,]
$V_i + di = d$	$V = V_1$	$\begin{array}{c c} \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $



$\frac{d}{k} = \frac{\int a \max e^{\frac{1}{2}} \left(\frac{1}{2} - \frac$	Foundation for Kalman Filter ~ make sure to understand this,	$lf \ 6o = 6_1 , \mathcal{K} = \frac{1}{2}$
$\begin{aligned} d_{1} = \frac{4\pi(d_{2} + 4\pi)d_{1}}{4\pi + 4\pi}, d_{2} = \frac{1}{6^{2}}, d_{2} = \frac{1}{6^{2}}, $	d for a subscription of a	After 2 observations, giving exact same thing.
$\begin{aligned} d_{1} = \frac{1}{6q} + \frac{1}{6q} +$	2 ^ means estimate }	$\frac{1}{1-1}$ - Made + 10 d.
$\begin{aligned} d_{1} = \frac{1}{6q} + \frac{1}{6q} +$		$a_1 = \frac{a_0 a_0 + a_0 a_1}{a_0 + a_0} \sim_7 varience covarience of this$
$d_{1} = d_{1} + k_{1} (d_{2} - d_{1})$ $d_{2} = d_{1} + k_{1} (d_{2} - d_{1})$ $k_{1} = \frac{c_{2}}{6^{2}} + \frac{c_{1}}{6^{2}} + \frac{c_{1}}{6^{$		$6^{-} = \frac{6}{4} \frac{6}{4} \frac{1}{2} + \frac{6}{4} \frac{1}{2} $
$k_{1} = 6_{1}^{2}$ $d_{1} = 6_{1}^{2} + k_{1}(d_{1} - d_{2})$ $k_{1} = 6_{1}^{2} + k_{1}(d_{1} - d_{2})$ $k_{2} = \frac{2}{6_{1}^{2}} = \frac{1}{2} \frac{6_{1}^{2}}{6_{1}^{2}} = \frac{1}{6_{1}^{2}} = \frac{1}{6$		τ
$k_{1} = d_{0} + k_{1}(d_{0} - d_{0})$ $k_{1} = \frac{d_{0}}{d_{0}^{2} + (f_{0}^{2} + f_{0}^{2})^{-1}}$ $k_{1} = \frac{d_{0}}{d_{0}^{2} + (f_{0}^{2} + f_{0}^{2})}$ $k_{2} = \frac{d_{0}}{d_{0}^{2} + (f_{0}^{2} + f_{0}^{2})}$ $k_{3} = \frac{d_{0}}{d_{1}^{2} + (f_{0}^{2} + f_{0}^{2})}$ $k_{4} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + (f_{0}^{2} - d_{0})}}{(h^{2} + f_{0}^{2})}$ $k_{4} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + (f_{0}^{2} - d_{0})}}{(h^{2} + f_{0}^{2} + f_{0}^{2})}$ $k_{4} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + (f_{0}^{2} - d_{0})}}{(h^{2} + f_{0}^{2} + f_{0}^{2})}$ $k_{4} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + (f_{0}^{2} - d_{0})}}{(h^{2} + f_{0}^{2} + f_{0}^{2})}$ $k_{4} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{4} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{4} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{5} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$ $k_{6} = \frac{d_{0} + \frac{d_{0}}{d_{0}^{2} + f_{0}^{2}}}{(h^{2} + f_{0}^{2})}$		$d_2 = d_1 + K (d_2 - d_1)$
$d_{1} = d_{0} + \frac{6^{2}}{6^{5} + 6^{2}} (d_{1} - d_{0})$ $d_{1} = d_{0} \frac{2}{6^{5} + 6^{2}} (d_{1} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{1} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{4} (d_{0} - d_{0})$ $d_{2} = \frac{d_{0} - d_{0}}{4} (d_{0} - d_{$		16.2
$d_{1} = d_{0} + \frac{6^{2}}{6^{5} + 6^{2}} (d_{1} - d_{0})$ $d_{1} = d_{0} \frac{2}{6^{5} + 6^{2}} (d_{1} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{1} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} 6^{2}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{6^{5} + 6^{2}} (d_{0} - d_{0})$ $d_{1} = \frac{d_{0} - d_{0}}{4} (d_{0} - d_{0})$ $d_{2} = \frac{d_{0} - d_{0}}{4} (d_{0} - d_{$	$d_1 = d_0 + \mathcal{K}(d_1 - d_0)$	$K_2 = \underline{6}_1^2 = \underline{\overline{2}}^{00}$ only depends on
$d_{1} = d_{0} + \frac{G^{2}}{6s^{2} + 6i^{2}} (d_{1} - d_{0})$ $d_{1} = d_{0} \frac{1}{6s^{2} + 6i^{2}} (d_{1} - d_{0})$ $d_{1} = \frac{d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2}}{6s^{2} + 6i^{2}}$ $d_{1} = \frac{d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $d_{1} = \frac{d_{0} 6s^{2} + d_{0} 6s^{2} - d_{0} 6s^{2}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $d_{0} = \frac{d_{0}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $d_{0} = \frac{d_{0}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $k = 0$ $d_{0} = \frac{d_{0}}{6s^{2} + 6i^{2}}$ $d_{0} = \frac{d_{0}}{1}$	$\kappa_{1} = 6_{0}^{2} (6_{0}^{2} + 6_{1}^{2})^{-1}$	$6_1^2 + 6_2^2 - \frac{1}{2} 6_0^2 + 6_1^2$ $6_0^2 \sim \text{ previous estimate qual}$
$d_{1} = d_{0} + \frac{G^{2}}{6s^{2} + 6i^{2}} (d_{1} - d_{0})$ $d_{1} = d_{0} \frac{1}{6s^{2} + 6i^{2}} (d_{1} - d_{0})$ $d_{1} = \frac{d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2}}{6s^{2} + 6i^{2}}$ $d_{1} = \frac{d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2} + d_{0} 6s^{2}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $d_{1} = \frac{d_{0} 6s^{2} + d_{0} 6s^{2} - d_{0} 6s^{2}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $d_{0} = \frac{d_{0}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $d_{0} = \frac{d_{0}}{6s^{2} + 6i^{2}}$ $(weighted average) Wi \approx \frac{1}{6i}$ $k = 0$ $d_{0} = \frac{d_{0}}{6s^{2} + 6i^{2}}$ $d_{0} = \frac{d_{0}}{1}$	$K_1 = \frac{6\sigma^2}{P \mu g in \kappa}$	6, ² ~ current estimate qual
$d_{1} = d_{0} + \frac{G^{2}}{6s^{2} + 6t^{2}} (dt - d_{0})$ $d_{1} = d_{0} \frac{G^{2}}{6s^{2} + 6t^{2}} (dt - d_{0})$ $d_{1} = \frac{d_{0} \frac{G^{2}}{s^{2} + 6t^{2}}}{Gt^{2} + 6t^{2}} \frac{dt \frac{G^{2}}{s^{2} + 6t^{2}}}{Gt^{2} + 6t^{2}}$ $(weighted average) Wi \approx \frac{1}{6t}$ $d_{1} = \frac{d_{0} \frac{G^{2}}{s^{2} + 6t^{2}}}{Gt^{2} + 6t^{2}} \frac{dt \frac{G^{2}}{s^{2} + 6t^{2}}}{Gt^{2} + 6t^{2}}$ $(weighted average) Wi \approx \frac{1}{6t}$	$\left(6\delta^2+6\Gamma^2\right)$	$d_2 = \frac{d_1 + d_2 + d_3}{d_1 + d_2 + d_3}$ if all 6's are equal
$d_{1} = \frac{d_{0}G_{0}^{2} + d_{1}G_{0}^{2} - d_{0}G_{0}^{2} = \frac{d_{0}G_{1}^{2} + d_{1}G_{0}^{2}}{G_{0}^{2} + G_{1}^{2}}$ $(weighted average) Wi \approx \frac{1}{G_{1}^{2}}$ $(weighted verage) Wi \approx \frac{1}{G_{1}^{2}}}$ $(weighted verage)$ $(wei$		3 ,
$d_{i} = \frac{d_{0} \delta_{0}^{2} + d_{1} \delta_{0}^{2} - d_{0} \delta_{0}^{2} + d_{1} \delta_{0}^{2}}{\delta_{0}^{2} + \delta_{1}^{2}}$ $(weighted average) Wi \approx \frac{1}{\delta_{1}^{2}}$ $(weigh$	$d_1 = d_0 + \underline{6_0^2} (d_1 - d_0)$	
$\begin{aligned} & \int_{G_{0}^{2} + G_{1}^{2}} & \int_{G_{0}^{2} + G_{1}^{2}} \\ & (weighted average) & \psi_{i} \ll \frac{1}{G_{i}^{2}} \\ & (weighted average) & ($	$6a^2 + 6i^2$	law of propogation of variance $C = \alpha a + \beta b$
$\begin{aligned} \hat{c}_{0}^{1} + \hat{c}_{1}^{2} & \hat{c}_{0}^{2} + \hat{c}_{1}^{2} \\ (weighted average) & \psi_{i} \ll \frac{1}{\hat{c}_{i}^{i}} \\ \\ \end{pmatrix} \\ \\ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$d = d_1 G_2^2 + d_2 G_2^2 + d_2 G_2^2 + d_2 G_2^2 + d_2 G_2^2$	$\frac{2}{2}$
$(weighted average) Wi \approx \frac{1}{6i}$ $y_{k} = f(x_{k}) + \epsilon_{k} \qquad K-time instant$ $k = 0 \qquad d_{0} = \hat{d_{0}}$ $k = 1 \qquad d_{1} = \hat{d_{1}} + \epsilon_{1} \\ \hat{d_{1}} = \hat{d_{0}} = \hat{d} \qquad since stational$ $k = 1 \qquad d_{1} = \hat{d_{1}} + \epsilon_{1} \\ \hat{d_{1}} = \hat{d_{0}} = \hat{d} \qquad since stational$ $k = 1 \qquad d_{1} = \hat{d_{1}} + \epsilon_{1} \\ \hat{d_{1}} = \hat{d_{0}} = \hat{d} \qquad since stational$ $k = 1 \qquad d_{1} = \hat{d_{1}} + \epsilon_{1} \\ \hat{d_{1}} = \hat{d_{0}} = \hat{d} \qquad since stational$ $k = 1 \qquad d_{1} = \hat{d_{0}} + \hat{c}_{1} \qquad nov 2 eqn \ 1 \ unFnourn$ $d_{0} = \hat{d_{0}} + \hat{c}_{1} \qquad nov 2 eqn \ 1 \ unFnourn$ $d_{0} = \hat{d_{0}} + \hat{c}_{1} \qquad nov 2 eqn \ 1 \ unFnourn$ $d_{0} = \hat{d_{0}} + \hat{c}_{1} \qquad nov 2 eqn \ 1 \ unFnourn$ $d_{0} = \hat{d_{0}} + \hat{c}_{1} \qquad nov 2 eqn \ 1 \ unFnourn$ $heasurement matrix \qquad measurement noise \\ (desgn matrix) \qquad \xi_{k} \sim N(0, \xi) \qquad normal \ distribution$ $linear function here.$ $ln \ case \ of \ AFS \ non-tinear function \ x_{k} \sim position \ 4_{k} \sim pseudorange.$ $\hat{x}_{0} = d_{0} \qquad 1 \ initial \ conductions \ F_{0} = \hat{d}_{0} = \hat{d}_{0} + \hat{d}_{1} \qquad (ethes \ most \ time) \ \hat{x}_{0} = d_{0} \qquad 1 \ initial \ conductions \ F_{0} = \hat{d}_{0} = \hat{d}_{0} + \hat{d}_{1} = \hat{d}$	$a_1 = u_0 u_0^- + u_0 u_0^- + u_1 u_0^ u_0 u_0^- = u_0 u_0^- + a_1 u_0^-$	$o_{c} = a - o_{a} + p - o_{b}$ Varience co-varience matrix
$\begin{array}{c} x_{k} = f(x_{k}) + \epsilon_{k} & K-\text{ time instant} \\ & We want to estimate \\ Observed.] & estimated & x_{k} given y_{k} \\ measured & parameter \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} (Y_{k} - H_{k} x_{k}) \\ \hline & Y_{k} = H_{k} ($		
$\begin{array}{c} x_{k} = f(x_{k}) + \epsilon_{k} & K-\text{ time instant} \\ & We want to estimate \\ Observed.] & estimated & x_{k} given y_{k} \\ measured & parameter \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} x_{k} + \epsilon_{k} \\ \hline & Y_{k} = H_{k} (Y_{k} - H_{k} x_{k}) \\ \hline & Y_{k} = H_{k} ($	(weighted average) Wi & I	
$\begin{array}{c} \text{Measurement parameter} \\ Y_{K} = H_{K} X_{K} + \varepsilon_{K} \\ Y_{K} = H_{K} X_{K} + \varepsilon_{K} \\ \hline Y_{K} = X_{K-1} + K_{K} \left(Y_{K} - H_{K} \hat{X}_{K-1} \right) \\ \hline X_{K} = \hat{X}_{K-1} + K_{K} \left(Y_{K} - H_{K} \hat{X}_{K-1} \right) \\ \hline Y_{K} = H_{K} X_{K} + \varepsilon_{K} \\ \hline Y_{K} = \hat{X}_{K-1} + K_{K} \left(Y_{K} - H_{K} \hat{X}_{K-1} \right) \\ \hline Y_{K} = H_{K} X_{K} + \varepsilon_{K} \\ \hline Y_{K} = \hat{X}_{K-1} + K_{K} \left(Y_{K} - H_{K} \hat{X}_{K-1} \right) \\ \hline Y_{K} = H_{K} (H_{K} P_{K-1} H_{K} + F_{K})^{-1} \\ \hline Y_{K} = H_{K} (H_{K} P_{K} + H_{K} (H_{K} P_{K} + H_{K} + H_{K})^{-1} \\ \hline Y_{K} = H_{K} (H_{K} P_{K} + H_{K} + H_{$		
$\begin{array}{c} measurement \\ \chi_{K} = H_{K} \chi_{K} + \varepsilon_{K} \\ \chi_{K} = \lambda_{K-1} + K_{K} \left(4\mu - 4\mu \chi_{K-1} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu - 4\mu \chi_{K-1} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu - 4\mu \chi_{K-1} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu - 4\mu \chi_{K-1} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu - 4\mu \chi_{K-1} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K-1} + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} \left(4\mu \chi_{K} - 4\mu \chi_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} - 1 + K_{K} \right) \\ \chi_{K} = \chi_{K} - 1 + K_{K} - 1 + K_$		
$\begin{array}{c} measurement \\ \chi_{k} = H_{k} \chi_{k} + \varepsilon_{k} \\ \chi_{k} = K_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k-1} + \tilde{\chi}_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k-1} + \tilde{\chi}_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}$	$Y_{K} = f(X_{K}) + \epsilon_{K}$ K-time instant	$K=0 \qquad d_0 = \hat{d_0} \qquad a = a$
$\begin{array}{c} measurement \\ \chi_{k} = H_{k} \chi_{k} + \varepsilon_{k} \\ \chi_{k} = K_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k-1} + K_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k-1} + \tilde{\chi}_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k-1} + \tilde{\chi}_{k} \left(4u - H_{k} \hat{\chi}_{k-1} \right) \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} - \tilde{\chi}_{k} \\ \chi_{k} = \tilde{\chi}_{k} - \tilde{\chi}$		$\begin{array}{c c} K=0 & d_0 = \hat{d_0} \\ K=1 & d_1 = \hat{d_1} + \epsilon_1 \end{array}$
$\begin{array}{c} \hat{\chi}_{k} = H_{k} \chi_{k} + \varepsilon_{k} \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(Y_{k} - H_{k} \hat{\chi}_{k-1} \right) \\ \hline \chi_{k} = \hat{\chi}_{k} - \chi_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + K_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + \hat{\chi}_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + \hat{\chi}_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k-1} + \hat{\chi}_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k} = \hat{\chi}_{k} + \hat{\chi}_{k} \right) \\ \hline \chi_{k} = \hat{\chi}_{k} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \hline \chi_{k} = \hat{\chi}_{k} = \hat{\chi}_{k} + \hat{\chi}_{k} \right) \\ \hline \chi_{k} = \hat{\chi}_{k} = \hat{\chi}_{k} + \hat{\chi}_{k} \\ \hline \chi_{k} = \hat{\chi}_{k} = \hat{\chi}_{k} + \hat{\chi}_{k} \\ \hline \chi_{k} = \hat{\chi}_{k} \\ \hline \chi_{k} = \hat{\chi}_{k} \\ \hline \chi_{k} = \hat{\chi}_{k} + \hat{\chi}_{k} \\ \hline \chi_{k} = \hat{\chi}_{k} \\ \dot{\chi}_{k} = \hat{\chi}_{$	1 t We want to estimate	$K=0 \qquad d_0 = \hat{d_0} \qquad \qquad$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	1 C We want to estimate Observed estimated Xr given Yr	$K=0 d_0 = \hat{d_0} \qquad \hat{A}_1 = \hat{d}_0 = \hat{d} \qquad \hat{A}_1 = \hat{d}_0 = \hat{d} \qquad \text{since stationary} \\ K=1 d_1 = \hat{d}_1 + \epsilon_1 \qquad \hat{d}_1 = \hat{d}_0 = \hat{d} \qquad \text{since stationary} \\ d_0 = \hat{d}_0 + \epsilon_2 \qquad \text{now } 2 eq^n 1 \text{ unknown}. \\ Now we want to apply sequential. 2 east squares.}$
$\begin{array}{c} \text{measurement matrix} & \text{measurement noise} \\ (design matrix) & \mathcal{E}_{K} \sim N(0, \vec{z}) \\ \text{linear function here.} \\ \text{In case of } QPS, non-linear function.} & \chi_{K} \sim position & \mathcal{Y}_{K} \sim pseudorange \\ \hline \\ & \mathcal{K}_{K} = P_{E-1} H_{K} \left(\mathcal{H}_{K} P_{E-1} H_{K}^{-1} + \mathcal{R}_{K} \right)^{-1} \\ \text{K}_{K} = P_{E-1} H_{K} \left(\mathcal{H}_{K} P_{E-1} H_{K}^{-1} + \mathcal{R}_{K} \right)^{-1} \\ \hline \\ & \mathcal{K}_{0} = d_{0} \\ \hline \\ & \mathcal{K}_{0} = d_{0} \\ \text{Initial conditions} \\ P_{0} = G_{0}^{2} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + \mathcal{K}_{1} \left(d_{1} - d_{0} \right) \\ & \mathcal{K}_{1} = G^{2} \left(G^{2} + G^{2} \right)^{-1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = G^{2} \left(G^{2} + G^{2} \right)^{-1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ &$	1 C We want to estimate Observed estimated Xr given Yr	Now we want to apply sequential least squares,
$\begin{array}{c} \text{measurement matrix} & \text{measurement noise} \\ (design matrix) & \mathcal{E}_{K} \sim N(0, \vec{z}) \\ \text{linear function here.} \\ \text{In case of } QPS, non-linear function.} & \chi_{K} \sim position & \mathcal{Y}_{K} \sim pseudorange \\ \hline \\ & \mathcal{K}_{K} = P_{E-1} H_{K} \left(\mathcal{H}_{K} P_{E-1} H_{K}^{-1} + \mathcal{R}_{K} \right)^{-1} \\ \text{K}_{K} = P_{E-1} H_{K} \left(\mathcal{H}_{K} P_{E-1} H_{K}^{-1} + \mathcal{R}_{K} \right)^{-1} \\ \hline \\ & \mathcal{K}_{0} = d_{0} \\ \hline \\ & \mathcal{K}_{0} = d_{0} \\ \text{Initial conditions} \\ P_{0} = G_{0}^{2} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + \mathcal{K}_{1} \left(d_{1} - d_{0} \right) \\ & \mathcal{K}_{1} = G^{2} \left(G^{2} + G^{2} \right)^{-1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = G^{2} \left(G^{2} + G^{2} \right)^{-1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} + d_{1} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ & \mathcal{K}_{1} = d_{0} \\ \hline \\ & \mathcal{K}_{2} = d_{0} \\ \hline \\ &$	1 C We want to estimate Observed estimated Xr given Yr measured parameter 5 7	Now we want to apply sequential least squares. $\hat{\chi}_{\kappa} = \hat{\chi}_{\kappa-1} + \kappa_{\kappa} \left(Y_{\kappa} - H_{\kappa} \hat{\chi}_{\kappa-1} \right)$
$\begin{array}{c} (urrefull) \\ (urrefull) $	1 C We want to estimate Observed estimated Xr given Yr measured parameter 5 7	Now we want to apply sequential least squares. $\hat{\chi}_{\kappa} = \hat{\chi}_{\kappa-1} + \kappa_{\kappa} \left(Y_{\kappa} - H_{\kappa} \hat{\chi}_{\kappa-1} \right)$
$\begin{array}{c} \text{Linear function here.} \\ \text{Linear function here.} \\ \text{In case of GPS, non-linear function } \chi_{k} \sim \text{position } \mathcal{Y}_{k} \sim \text{pseudorange} \\ \hline \mathcal{K}_{k} = \mathcal{R}_{k-1} H_{k}^{T} \left(\mathcal{H}_{k} \mathcal{R}_{k-1} H_{k}^{T} + \mathcal{R}_{k}\right)^{-1} \\ \text{In case of GPS, non-linear function } \chi_{k} \sim \text{position } \mathcal{Y}_{k} \sim \text{pseudorange} \\ \hline \mathcal{K}_{0} = do \\ \hline \mathcal{K}_{0} = do \\ \text{Initial conditions} \\ \mathcal{R}_{0} = do \\ \text{Initial conditions} \\ \mathcal{R}_{0} = do \\ \hline \mathcal{K}_{1} = do + \mathcal{K}_{1} (d_{1} - d_{0}) \\ \hline \mathcal{K}_{1} = 6o^{2} \left(6o^{2} + 6o^{2} \right)^{-1} \\ \hline \mathcal{K}_{1} = \frac{1}{2} \Rightarrow \\ \hline \mathcal{K}_{2} = \frac{1}{2} \Rightarrow \\ \hline \mathcal{K}_{1} = \frac{1}{2} \Rightarrow \\ \hline \mathcal{K}_{2} = \frac{1}{2} \Rightarrow \\ \hline \mathcal{K}_{3} $	$\begin{array}{cccc} \uparrow & \uparrow & & & & & & & & \\ \hline Observed & estimated & & & & & \\ \hline Measured & & & & & & \\ \hline YK = & H_K X_K + & & E_K \end{array}$	$\hat{X}_{k} = \hat{X}_{k-1} + K_{k} \left(Y_{k} - H_{k} \hat{X}_{k-1} \right)$
$\begin{array}{c} \text{linear function here.} \\ \text{In case of } \text{Aps, non-linear function } \chi_{k} \sim \text{position } \mathcal{Y}_{k} \sim \text{pseudorange} \\ \text{In case of } \text{Aps, non-linear function } \chi_{k} \sim \text{position } \mathcal{Y}_{k} \sim \text{pseudorange} \\ \hline \chi_{0} = do \\ \text{measurements } \xrightarrow{\rightarrow} d_{k} \\ \text{Maximitation } \mathcal{Y}_{0} = do \\$	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{\chi}_{k} = \hat{\chi}_{k-1} + \kappa_{k} \left(\frac{\gamma_{k} - H_{k} \hat{\chi}_{k-1}}{1 + \kappa_{k}} \right)$ $\frac{1}{4ain} \qquad \text{Innovation} = \frac{\gamma_{k} - \hat{\gamma}_{k}}{1 + \kappa_{k}}$
In case of GPS, non-linear function, $\chi_{k} \sim position$ $Y_{k} \sim pseudorange$ $\begin{array}{c} computationally complex (takes most time) \\ \hline \chi_{0} = do] initial conditions \\ \hline \chi_{0} = do + \kappa_{0} (d_{0} - d_{0}) \\ \hline \chi_{1} = do + \kappa_{0} (d_{0} - d_{0}) \\ \hline \chi_{1} = do + conditions \\ \hline \chi_{2} = do + condital \\ \hline \chi_{2} = do + c$	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{k} = \hat{x}_{k-1} + k_{k} \left(\frac{y_{k} - H_{k} \hat{x}_{k-1}}{n no vation} \right)$ $\frac{1}{4ain} \qquad (nno vation = \frac{y_{k} - \hat{y}_{k}}{new into (osservation)}$ $\frac{1}{4ain} \qquad (scaling factor) \qquad (or explicit on)$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{k} = \hat{x}_{k-1} + k_{k} \left(\frac{y_{k} - H_{k} \hat{x}_{k-1}}{n no vation} \right)$ $\frac{1}{4ain} \qquad (nno vation = \frac{y_{k} - \hat{y}_{k}}{new into (osservation)}$ $\frac{1}{4ain} \qquad (scaling factor) \qquad (or explicit on)$
$ \begin{array}{c} \hat{x}_{0} = d_{0} \left[\text{ initial conditions} \\ $	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{k} = \hat{x}_{k-1} + k_{k} \left(\frac{y_{k} - H_{k} \hat{x}_{k-1}}{n no vation} \right)$ $\frac{1}{4ain} \qquad (nno vation = \frac{y_{k} - \hat{y}_{k}}{new into (osservation)}$ $\frac{1}{4ain} \qquad (scaling factor) \qquad (or explicit on)$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1})$ $\begin{array}{c} \hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1}) \\ \hat{x}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ (scaling factor) \\ (scaling factor) \\ K_{\kappa} = P_{\kappa-1} H_{\kappa}^{T} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{T} + R_{\kappa})^{-1} \\ K_{\kappa} = P_{\kappa-1} H_{\kappa}^{T} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{T} + R_{\kappa})^{-1} \end{array}$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1})$ $\begin{array}{c} \hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1}) \\ \hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1}) \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa-1} + \hat{y}_{\kappa} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{-1} + R_{\kappa})^{-1} \\ K_{\kappa} = P_{\kappa-1} + \hat{y}_{\kappa} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{-1} + R_{\kappa})^{-1} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - N(O, R_{\kappa}) \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + $
$\hat{x}_{i} = d_{0} + K_{1}(d_{i} - d_{0})$ $K_{1} = \delta_{0}^{2} (\delta_{0}^{2} + \delta_{i}^{2})^{-1}$ $K_{1} = \frac{1}{2} \Rightarrow \hat{x}_{i} = \hat{d}_{i} = \frac{d_{0} + d_{1}}{2}$	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1})$ $\begin{array}{c} \hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1}) \\ \hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1}) \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa-1} + \hat{y}_{\kappa} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{-1} + R_{\kappa})^{-1} \\ K_{\kappa} = P_{\kappa-1} + \hat{y}_{\kappa} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{-1} + R_{\kappa})^{-1} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - N(O, R_{\kappa}) \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + $
	$f \qquad f \qquad we want to estimate$ $observed \ estimated \qquad \chi_{K} given \ Y_{K}$ $measured \qquad parameter$ $Y_{K} = H_{K} \chi_{K} + \varepsilon_{K}$ $weasurement \ matrix \qquad measurement \ noise \\ (design \ matrix) \qquad \varepsilon_{K} \sim N(o, \leq) \qquad Normal \ distribution$ $linear \ function \ here.$ $In \ case \ of \ GPS, \ non-linear \ function \ \chi_{K} \sim pos)tion \ Y_{K} \sim pseudorange$ $M \qquad measurements \rightarrow d_{K}$	Now we want to apply sequential least squares. $\hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1})$ $\begin{array}{c} \hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1}) \\ \hat{x}_{\kappa} = \hat{x}_{\kappa-1} + K_{\kappa} (Y_{\kappa} - H_{\kappa} \hat{x}_{\kappa-1}) \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa-1} + \hat{y}_{\kappa} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{-1} + R_{\kappa})^{-1} \\ K_{\kappa} = P_{\kappa-1} + \hat{y}_{\kappa} (H_{\kappa} P_{\kappa-1} + H_{\kappa}^{-1} + R_{\kappa})^{-1} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - N(O, R_{\kappa}) \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} - \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} + \hat{y}_{\kappa} \\ \hat{y}_{\kappa} = \hat{y}_{\kappa} + $
	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{L} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{L} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{L} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = P_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$
nK - nK	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{L} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{L} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{L} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = P_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$ $\frac{\hat{x}_{K} = A_{K-1} + K_{K} (H_{K} P_{K-1} + K_{K})^{-1}$
$V = X + K (A_0 - A_1) - (A_0 + A_1) + (A_0 - A_1)$	$f \qquad \qquad$	Now we want to apply sequential least squares. $\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{K} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{x}_{K} = \hat{x}_{K-1} + K_{K} (Y_{K} - H_{K} \hat{x}_{K-1})$ $\frac{\hat{y}_{K} + \hat{y}_{K} - \hat{y}_{K} + (\hat{y}_{K} - H_{K} \hat{y}_{K} - \hat{y}_{K})$ $\frac{\hat{y}_{K} = \hat{y}_{K-1} + \hat{y}_{K} (H_{K} P_{K-1} + H_{K} + R_{K})^{-1}$ $\frac{\hat{y}_{K} - N(O_{1} R_{K})}{(O_{1} R_{K})}$ $\frac{\hat{y}_{0} = d_{0} \qquad \text{initial conditions}}{\hat{y}_{0} = d_{0} \qquad \text{initial conditions}}$ $P_{0} = \hat{y}_{0}^{2} \qquad (\hat{y}_{0}^{2} + \hat{y}_{0}^{2})^{-1} \qquad K_{1} = \hat{y} \qquad \hat{y}_{1}^{2} = \hat{y}_{1} = \frac{d_{0} + d_{1}}{2}$


$$k_{2} = \frac{6o^{2}}{2} \left(\frac{6o^{2}}{2} + 6o^{2}\right)^{-1} = \frac{1}{3}$$

$$k_{2} = \frac{do+di}{2} + \frac{1}{3} \left(\frac{d_{2} - do+di}{2}\right) = \frac{(d_{0} + d_{1})}{2} + \frac{d_{2}}{3} = \frac{d_{0} + di + d_{2}}{3}$$
If we keep doing this $x_{3}^{2} = \frac{d_{0} + di + d_{2} + d_{3}}{4}$
If we keep doing this $x_{3}^{2} = \frac{d_{0} + di + d_{2} + d_{3}}{4}$
Now with this modification, I am able to do the exact same thing with the added advantage that I don't need to do batch estimation.
This is helpful when your datasize becomes large and You cannot accomposate all of your data in memory at once. Also, helpful when you want to do processing in real time.
The most time consuming step in this process computationally is the calculation of the inverse in Kz. Otherwise it is all simple matrix multiplication.
So, this is Sequential least Squares.

	positi cra
We are simply taking the weighted average. If the spread 6_0^2	Kalm
is same then it becomes the normal average.	
$d_1 = 6_1^2$ combine these two by taking weighted average $d_2 = 6_2^2$	Je c
Everytime I am doing a weighted average. It is turning out	
weighted average because	,
1. This is a normal distribution	
Q. This is a linear problem	Same
lf this is a non-linear problem this won't be simple weighted	Why
average so then, how to tackle the case for non-linear problem	What
(UKE GPS)?	
pseudo-range	If the
$f = \sqrt{(x - x_{\mu})^2 + (y - y_{\mu})^2 + (z - z_{\mu})^2 + non - linear}$	takin
	you a
We will linearize this using Taylor series 2 ignore HOT	wor
	not
$Y_{K} = f(X_{0}) + \frac{\partial f}{\partial f} (X - X_{0}) + \epsilon$ Here, H_{K} will now change	whe
$Y_{K} = f(x_{0}) + \frac{\partial f}{\partial x} \Big _{x=x_{0}} + \epsilon \qquad \text{Here, } H_{K} \text{ will now change} \\ at every instant.$	m
~Lab3: non-linear problem—least squares	

	An optimal estimation algorithm.
$ \xrightarrow{a} $	use deterministic + statistical properties
	of the system parameters and measurements
	to obtain optimal estimates. (Bayesian)
	stage of Using Kalman Filter?
If the sensor was	working perfectly everytime you are
lf the sensor was taking the measur	working perfectly everytime you are rement then you could find out where
lf the sensor was taking the measur you are but for s	working perfectly everytime you are rement then you could find out where rome reason the inertial sensor stops
If the sensor was taking the measur you are but for s working for some	working perfectly everytime you are rement then you could find out where
lf the sensor was taking the measur you are but for s working for some	working perfectly everytime you are cement then you could find out where come reason the inertial sensor stops time then your least squares will

measurement model	Now with this understanding, let's see this example
$Z_{K} = H_{K}X_{K} + C_{K}$	$X_{K} = d_{K}$
lt establishes relationship blw what you are measuring and what you want to estimate	$\hat{X}_{\mathcal{K} \mathcal{K}-1} = \hat{X}_{\mathcal{K}-1} _{\mathcal{K}-1}$
·	Because this is static, position at K is going to be
Motion model or state propogation model	same as position at K-1.
This new model in case of Kalman filter that tells you how state propogates over time. This model was not available	correct motion model would be
in case of least squares.	$XKIK-I = XK-I/K + \in K$
$X_{K} = f(X_{K-1}) + \epsilon_{K}$ This is based on your understanding.	estimate still the same because Ex has zero mean.
	we include this random noise component. Why?
$\hat{X}_{\mathcal{K}} = \hat{X}_{\mathcal{K}-1}$	to account for any uncertainties.
$\hat{X}_{\mathcal{K}} = \hat{X}_{\mathcal{K}-1} + \mathcal{V}_{\mathcal{K}-1} \Delta t$	Using motion modul I predict what my state is going to b
$\lambda K = \lambda K \cdot I + \nu K \cdot I \Delta t$	I get observations ZK and use them to adjust this. I can correct for errors using ZK
$\hat{X}_{K K} = \hat{X}_{K K-1} + K \left(z_{k} - H_{k} \hat{X}_{k K-1} \right)$	Beauty of Kalman Filter ~ use up to X+1 observations to
	estimate K+1 state, do correction and predict again
This is how it is going to run	estimate K+1 state, do correction and predict again. The beauty is that we intuitively use this every day.
	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction—correction model ~ All of us have build models inside throughout our lives.
This is how it is going to run 1. prediction prediction correction 2. correction	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction—correction model ~ All of us have build models inside throughout our lives. This person going to behave like this if put in a condition like
This is how it is going to run. 1. prediction Correction	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction—correction model ~ All of us have build models inside throughout our lives. This person going to behave like this if put in a condition like that we do that to everybody. But that model may not be corr
This is how it is going to run 1. prediction prediction correction &. correction	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction—correction model ~ All of us have build models inside throughout our lives. This person going to behave like this if put in a condition like
This is how it is going to run 1. prediction prediction correction Q correction If observations not available then we can only predict. $P_{K K-1} = P_{K-1 K-1} + Q$ Q = Process noise matrix	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction-correction model ~ All of us have build models inside throughout our lives. This person going to behave like this if put in a condition like that we do that to everybody. But that model may not be corr This model is different for everybody. Once I get observation
This is how it is going to runPredictionCorrection1. predictionPredictionCorrection \mathcal{Q} correctionIf observations not available then we can only predict. $P_{K K-1} = P_{K-1 K-1} + Q$ $Q = process$ noise matrixIf Q is low then I have more confidence in predictions.	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction-correction model ~ All of us have build models inside throughout our lives. This person going to behave like this if put in a condition like that. We do that to everybody. But that model may not be corr This model is different for everybody. Once I get observation based on what happens actually we apply correction & updat Apollo project ~ Very first application of Kalman Filters
This is how it is going to run 1. prediction prediction correction \mathfrak{P} correction If observations not available then we can only predict. $P_{K K-1} = P_{K-1 K-1} + Q$	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction—correction model ~ All of us have build models inside throughout our lives. This person going to behave like this if put in a condition like that we do that to everybody. But that model may not be corr This model is different for everybody. Once I get observation based on what happens actually we apply correction & updat
This is how it is going to run 1. prediction Prediction Correction Q. correction 1f observations not available then we can only predict. $P_{K K-1} = P_{K-1 K-1} + Q$ Q = process noise matrix If Q is low then I have more confidence in predictions.	estimate K+1 state, do correction and predict again The beauty is that we intuitively use this every day. Example of prediction-correction model ~ All of US have build models inside throughout our lives. This person going to behave like this if put in a condition like that We do that to everybody. But that model may not be corr This model is different for everybody. Once I get observation based on what happens actually we apply correction 2 updat • Apollo project ~ Very first application of Kalman Filters • 5 core elements of Kalman Filter
This is how it is going to run 1. prediction prediction correction Q correction If observations not available then we can only predict. $P_{K K-1} = P_{K-1 K-1} + Q$ Q = Process noise matrix If Q is low then I have more confidence in predictions.	estimate K+1 state, do correction and predict again. The beauty is that we intuitively use this every day. Example of prediction-correction model ~ All of us have build models inside throughout our lives. This person going to behave like this if put in a condition like that. We do that to everybody. But that model may not be corr This model is different for everybody. Once I get observation based On what happens actually we apply correction & updat Apollo project ~ Very first application of Kalman Filters 5 core elements of Kalman Filter

Initial estimate	Kalman Filter ~ Works in a prediction - correction mode
In case of least squares, the choice of initial estimate do	· State
not have any impact on estimated solution. A good or poor	Motion Model or State transition model KF
initial estimate just V or 1 the no. of iterations but	
both lead to same final estimates.	
Doirc lead to same find escimitates.	Measurement noise covarience (R)
But when we talk about sequential least squares or the	Process noise covarience (Q)
Kalman Filter & your initialisation is wrong, whole solu	Manual A Marken
will be wrong Initial estimate is very very important there	$t=0 \qquad do \qquad 60^2$
where be wrong, the trace estimate is very very an portane chare.	back to same example Xo: initial state
$2 \times 6^{2} t=1 d_1, d_2, d_3, d_4 \longrightarrow (x_1, y_1)$	d Po: initial covarience
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\longrightarrow \qquad \qquad$
$X_{K} = X_{K-1} + K(Y - \overline{Y})$	$\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}$
$t = 10$ $K = ()^{-1}$	General motion model: $P_{1/0} = G_0^2 + G_0^2$
Assignment ~ Kalman Filter estimate	$X_{K} = F_{K} X_{K-1} + E_{K}$
Solve first using least squares then use	
that as initial estimate for the Kalman	here, $X_{\mathcal{K}} = X_{\mathcal{K}-1} + \mathcal{E}_{\mathcal{K}}$ i.e. $F_{\mathcal{K}} = I$ covarience $\hat{X}_{\mathcal{K}} = \hat{X}_{\mathcal{K}-1}$ $\stackrel{\checkmark}{\to} \mathcal{E}_{\mathcal{K}} \sim N(0, 6_{\mathcal{O}}^{2})$
filter and find the estimates	
×4	Random Error ~always Reep it some value
× T	Reep very small if we believe no randomness but we never keep it zero.
Predicted covarience: $P_k = F_k P_{k-1} F_k^T + Q_k \sim made one assumption$	$Measurement: z_{E} = HEXE + VE \qquad VE \sim N(0, RE)$
	$d_{\mathcal{K}} = \mathcal{I} \cdot d_{\mathcal{K}} + V_{\mathcal{K}}$
We know for $L = a + b$, $6_c = 6_a^2 + 6_b^2 + []]$	
	$d_{K} = I \cdot d_{K} + V_{K}$ (both assumptions made here)
We know for $L = a+b$, $6_c = 6_a^2 + 6_b^2 + \begin{bmatrix} \\ \\ \\ \end{bmatrix}$ We assume $P_K \& R_K$ uncorrelated \sim varience co-varience = 0	$d_{K} = I \cdot d_{K} + V_{K}$ (both assumptions made here) $x_{0} = P_{0}$
We know for $L = a + b$, $6_c = 6_a^2 + 6_b^2 + []]$	$d_{K} = I \cdot d_{K} + V_{K}$ $(both assumptions made here)$ $x_{0} = P_{0}$ $t = 0 \qquad d_{0} \qquad f_{0}^{2} \qquad \qquad X_{K} = F_{K} \times K \cdot I + \mathcal{E}_{K}$
We know for $c = a + b$, $6_c = 6_a^2 + 6_b^2 + [$ We assume $P_k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$d_{K} = I \cdot d_{K} + V_{K}$ $(both assumptions made nere)$ $x_{0} = P_{0}$ $t = 0 \qquad d_{0} = \delta_{0}^{2} \qquad X_{K} = F_{K} \times k \cdot l + \mathcal{E}_{K}$ $x_{0} : state = d \qquad X_{K} = X_{K-l} + \mathcal{E}_{K}$
We know for $c = a + b$, $6_c = 6_a^2 + 6_b^2 + [$ We assume $P_c \ \& \ @_c$ uncorrelated \sim varience co-varience = 0 Assumptions \bigcirc Process noise ($@$) is uncorrelated with covarience (P).	$d_{K} = I \cdot d_{K} + V_{K}$ $(\text{both Assumptions made here})$ $x_{0} P_{0}$ $t = 0 d_{0} f_{0}^{2} \qquad X_{K} = F_{K} \times_{K-1} + \mathcal{E}_{K}$ $x_{0} : \text{State} = d \qquad X_{K} = X_{K-1} + \mathcal{E}_{K}$ $P_{0} \qquad X_{K} = X_{K-1}$
We know for $c = a + b$, $6_c = 6_a^2 + 6_b^2 + [$ We assume $P_k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$d_{K} = I \cdot d_{K} + V_{K}$ $(both Assumptions made here)$ $x_{0} = R_{0}$ $t = 0 \qquad d_{0} = 0$ $x_{0} = K_{K} = F_{K} \times K_{-1} + \mathcal{E}_{K}$ $x_{0} : State = d \qquad X_{K} = X_{K-1} + \mathcal{E}_{K}$ $P_{0} \qquad X_{K} = X_{K-1} + \mathcal{E}_{K}$
We know for $c = a + b$, $6_c = 6_a^2 + 6_b^2 + [$ We assume $P_c \& a_c$ uncorrelated \sim varience co-varience = 0 Assumptions ① Process noise (Q) is uncorrelated with covarience (P) . ② AWGN \sim Additive White Gaussian Noise	$d_{\mathcal{K}} = \mathbf{I} \cdot d_{\mathcal{K}} + V_{\mathcal{K}}$ $(\text{both Assumptions made here})$ $x_{0} P_{0}$ $t = 0 d_{0} f_{0}^{2} \qquad X_{\mathcal{K}} = F_{\mathcal{K}} \times r_{-1} + \mathcal{E}_{\mathcal{K}}$ $x_{0} : state = d \qquad X_{\mathcal{K}} = X_{\mathcal{K},-1} + \mathcal{E}_{\mathcal{K}}$ $P_{0} \qquad X_{\mathcal{K}} = X_{\mathcal{K},-1} + \mathcal{E}_{\mathcal{K}}$
We know for $c = a + b$, $6_c = 6_a^2 + 6_b^2 + [$ We assume $P_k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$d_{k} = I \cdot d_{k} + V_{k}$ $(both assumptions made here)$ $x_{0} = P_{0}$ $t = 0 d_{0} f_{0}^{2} \qquad X_{k} = F_{k} \times k \cdot i + \mathcal{E}_{k}$ $x_{0} : state = d \qquad X_{k} = X_{k-1} + \mathcal{E}_{k}$ $P_{0} \qquad X_{k} = \hat{X}_{k-1} + \mathcal{E}_{k}$ $P_{0} \qquad X_{k} = \hat{X}_{k-1} + \mathcal{E}_{k}$ $P_{0} \qquad X_{k} = \hat{X}_{k-1} + \mathcal{E}_{k}$ $P_{0} \qquad X_{k} = X_{k-1} + \mathcal{E}_{k}$
We know for $c = a + b$, $6_c = 6_a^2 + 6_b^2 + [$ We assume $P_k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$d_{k} = I \cdot d_{k} + V_{k}$ $(both assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} f_{0}^{2} \qquad X_{k} = F_{k} \times k \cdot i + \mathcal{E}_{k}$ $x_{0} : state = d \qquad X_{k} = X_{k-1} + \mathcal{E}_{k}$ $P_{0} \qquad X_{k} = X_{k-1} + \mathcal{E}_{k}$ $P_{k} = X_{k} = H_{k} \times X_{k} + V_{k}$ $X_{k} = X_{k-1} + K (Z - \overline{Z}) \qquad V_{k} \sim N(0, R_{k})$
We know for $c = a + b$, $6_c = 6_a^2 + 6_b^2 + [$ We assume $P_c \ \& \ \&_c \ uncorrelated \ \sim varience \ co-varience = 0$ Assumptions ① Process noise (a) is uncorrelated with covarience (P) . ② AWGN \sim Additive White Gaussian Noise $\cdot E(c_c \ e_{c-1}) = 0$ (zero covarience) 2 white Noise $t \ is uncorrelated over time$ $\cdot E(c_c \ e_{c-1}) = 0 \sim coloured Noise \sim ways to handle that$	$d_{K} = I \cdot d_{K} + V_{K}$ $(both assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} \delta_{0}^{2} \qquad X_{K} = F_{K} \times k \cdot l + \mathcal{E}_{K}$ $x_{0} : state = d \qquad X_{K} = X_{K-1} + \mathcal{E}_{K}$ $P_{0} \qquad X_{K} = X_{K} + \mathcal{E}_{K}$ $X_{K} = X_{K} + \mathcal{E}_{K}$
We know for $c = a + b$, $6_c = 6a^2 + 6b^2 + [$ We assume $P_k \ \& \ \& c = 0$ Assumptions Process noise (a) is uncorrelated with covarience (P) . AWGN ~ Additive White Gaussian Noise $\cdot E(e_k e_{k-1}^-) = 0$ (zero covarience) 2 White Noise e is uncorrelated over time	$d_{K} = I \cdot d_{K} + V_{K}$ $(both assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} \delta_{0}^{2} \qquad X_{K} = F_{K} \times \kappa_{\cdot 1} + \mathcal{E}_{K}$ $x_{0} : state = d \qquad X_{K} = X_{K-1} + \mathcal{E}_{K}$ $R_{0} \qquad X_{K} = X_{K-1} + \mathcal{E}_{K}$ $R_{1} = d_{0} + \mathcal{E}_{0} + \mathcal{E}_{0} + \mathcal{E}_{0}$ $R_{1} = Z_{0} + \mathcal{E}_{0} + \mathcal{E}_{0}$ $R_{1} = Z_{1} + \mathcal{E}_{K} + \mathcal{E}_{K}$ $R_{1} = P H_{K} (HPH^{T} + R)^{-1} \qquad Z_{1} = H_{L} \hat{X}_{L} _{K-1}$
We know for $c = a + b$, $6_c = 6_a^2 + 6b^2 + [$ We assume $P_c \ \& \ \&_c$ uncorrelated \sim varience co-varience = 0 Assumptions ① Process noise (Q) is uncorrelated with covarience (P) . ② AWGN \sim Additive White Gaussian Noise $\cdot E(\epsilon_k \epsilon_{k-1}^{-}) = 0$ (zero covarience) 2 white Noise ϵ is uncorrelated over time $\epsilon \in (\epsilon_k \epsilon_{k-1}^{-}) = 0 \sim coloured Noise \sim ways to handle that exist as well \sim World discuss here.$	$d_{K} = I \cdot d_{K} + V_{K}$ $(both assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} \delta_{0}^{2} \qquad X_{K} = F_{K} \times k \cdot l + \mathcal{E}_{K}$ $x_{0} : state = d \qquad X_{K} = X_{K-1} + \mathcal{E}_{K}$ $P_{0} \qquad X_{K} = X_{K} + \mathcal{E}_{K}$ $X_{K} = X_{K} + \mathcal{E}_{K}$
 We know for c = a+b, 6c = 6a² + 6b² + [] We assume Rc & & uncorrelated ~ varience co-varience = 0 Assumptions Process noise (Q) is uncorrelated with covarience (P). RWGN ~ Additive White Gaussian Noise E (Ecctor) = 0 (zero covarience)) White Noise E (Ecctor) = 0 ~ coloured Noise ~ ways to handle that exist as well ~ won't discuss here. Particle Filter takes care of the case when noise is not gaussian. 	$d_{k} = I \cdot d_{k} + V_{k}$ $(both assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} \delta_{0}^{2} \qquad X_{k} = F_{k} \times k \cdot i + \mathcal{E}_{k}$ $x_{0} : state = d \qquad X_{k} = X_{k-1} + \mathcal{E}_{k}$ $P_{0} \qquad X_{k} = X_{k-1} + \mathcal{E}_{k}$ $P_{1} = d_{0} \qquad F_{k} = I$ $P_{1} = \delta_{0}^{2} + \delta_{0}^{2} \qquad X_{k} = H_{k} \times \chi_{k} + V_{k}$ $X_{k} = K_{k-1} + K(Z - \overline{Z}) \qquad V_{k} \sim N(0, R_{k})$ $X_{k} = P_{k} (HPH^{T} + R)^{-1} \qquad \overline{Z} = H_{k} \times \chi_{k} + V_{k}$ $K = P_{k} (HPH^{T} + R)^{-1} \qquad \overline{Z} = H_{k} \times \chi_{k} + I$
 We know for c = a+b, 6c = 6a²+6b²+[] We assume Pc & Qc uncorrelated ~ varience co-varience = 0 Assumptions Process noise (Q) is uncorrelated with covarience (P). AWGN ~ Additive White Gaussian Noise E(cccr) = 0 (zero covarience) 2 white Noise E(cccr) = 0 ~ coloured Noise ~ ways to handle that exist as well ~ won't discuss here. Particle Filter~ takes care of the case when noise is not gaussian. If it is gaussian it simplifies to kalman. This is computationally 	$d\kappa = I \cdot d_{\kappa} + V_{\kappa}$ $(both assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} = 6_{0}^{2} \qquad \chi_{\kappa} = F_{\kappa} \chi_{\kappa-1} + \varepsilon_{\kappa}$ $x_{0} : state = d \qquad \chi_{\kappa} = \chi_{\kappa-1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa-1} + \varepsilon_{\kappa}$ $R_{\kappa} = R_{\kappa} + \varepsilon_{\kappa}$ $R_{\kappa} = R_{\kappa} + \varepsilon_{\kappa} + \varepsilon_{\kappa} + \varepsilon_{\kappa}$ $R_{\kappa} = R_{\kappa} + \varepsilon_{\kappa} + \varepsilon_{\kappa} + \varepsilon_{\kappa}$ $R_{\kappa} = R_{\kappa} + \varepsilon_{\kappa} + $
 We know for L = a+b, 6c = 6a² + 6b² + [] We assume PL & QL uncorrelated ~ varience co-varience = 0 Assumptions Process noise (Q) is uncorrelated with covarience (P). AWGN ~ Additive White Gaussian Noise E (EL EL-1) = 0 (zero covarience) 2 White Noise E (EL EL-1) = 0 (zero covarience) 2 White Noise E (EL EL-1) = 0 ~ coloured Noise ~ ways to handle that exist as well ~ work discuss here. Particle Filter ~ takes care of the case when noise is not gaussian. If it is gaussian it simplifies to kalman. This is computationally very expensive and people not able to use it for a lot of real	$d\kappa = I \cdot d_{\kappa} + V_{\kappa}$ $(both Assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} \delta_{0}^{2} \qquad \chi_{\kappa} = F_{\kappa} \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $\chi_{0} : state = d \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa \cdot 1} + \varepsilon_{\kappa}$ $R_{1} = \sigma_{0}^{2} + \sigma_{0}^{2} \qquad \chi_{\kappa} = H_{\kappa} \chi_{\kappa} + v_{\kappa}$ $\chi_{\kappa} = \mu_{\kappa} (H_{\kappa} + v_{\kappa} + v$
 We know for c = a+b, 6c = 6a²+6b²+[] We assume Rc & & uncorrelated virtual co-variance = 0 Assumptions Process noise (Q) is uncorrelated with covariance (P). AWGN ~ Additive White Gaussian Noise E(cccr) = 0 (zero covariance)) White Noise E(cccr) = 0 (zero covariance)) White Noise E(ccccr) = 0 ~ coloured Noise ~ ways to handle that exist as well ~ world discuss here. Particle Filter ~ takes care of the case when noise is not gaussian. If it is gaussian it simplifies to kalman. This is computationally very expensive and people not able to use if for a lot of real world applications one reason is we don't know what distribution	$d\kappa = I \cdot d_{\kappa} + V_{\kappa}$ $(both assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} = 6_{0}^{2} \qquad \chi_{\kappa} = F_{\kappa} \chi_{\kappa-1} + \varepsilon_{\kappa}$ $x_{0} : state = d \qquad \chi_{\kappa} = \chi_{\kappa-1} + \varepsilon_{\kappa}$ $R_{0} \qquad \chi_{\kappa} = \chi_{\kappa-1} + \varepsilon_{\kappa}$ $R_{1} = \varepsilon_{0}^{2} + \varepsilon_{0}^{2} \qquad \chi_{\kappa} = H_{\kappa} \chi_{\kappa} + v_{\kappa}$ $\chi_{\kappa} = F_{\kappa} \chi_{\kappa-1} + \kappa (z-\overline{z}) \qquad V_{\kappa} \sim N(0, R_{\kappa})$ $\chi_{1} = d_{0} + \kappa (d_{1} - d_{0}) \qquad d_{\kappa} = I \cdot d_{\kappa} + v_{\kappa}$ $\kappa = P H_{\kappa} (HPH^{T} + R)^{-1} \qquad \overline{z} = H_{\kappa} \chi_{\kappa} _{\kappa-1}$ $What happens when You don't have observations?$
 We know for c = a+b, 6c = 6a²+6b²+ [] We assume PL & QL uncorrelated ~ varience co-varience = 0 Assumptions Process noise (Q) is uncorrelated with covarience (P). AWGN ~ Additive White Gaussian Noise E (EL EL-1) = 0 (zero covarience) 2 White Noise E (EL EL-1) = 0 (zero covarience) 2 White Noise E (EL EL-1) = 0 ~ coloured Noise ~ ways to handle that exist as well ~ won't discuss here. Particle Filter ~ takes care of the case when noise is not gaussian. If it is gaussian it simplifies to kalman. This is computationally very expensive and people not able to use it for a lot of real 	$d_{k} = I \cdot d_{k} + V_{k}$ $(both Assumptions made here)$ $x_{0} = R_{0}$ $t = 0 d_{0} \delta_{0}^{2} \qquad X_{k} = F_{k} \times \kappa_{1} + \epsilon_{k}$ $x_{0} : state = d \qquad X_{k} = X_{k-1} + \epsilon_{k}$ $P_{0} \qquad X_{k} = X_{k-1} + \epsilon_{k}$ $P_{1} = d_{0} \qquad F_{k} = I$ $P_{1} = \delta_{0}^{2} + \delta_{0}^{2} \qquad Z_{k} = H_{k} \times \kappa + V_{k}$ $X_{k} k = \hat{X}_{k} k + k (Z - \overline{Z}) \qquad V_{k} \sim N(0, R_{k})$ $\hat{X}_{k} k = \hat{X}_{k} k + k (Z - \overline{Z}) \qquad V_{k} \sim N(0, R_{k})$ $\hat{X}_{k} k = \delta_{0} + \kappa (d_{1} - d_{0}) \qquad d_{k} = I \cdot d_{k} + V_{k}$ $K = P H_{k} (HPH^{T} + R)^{-1} \qquad \overline{Z} = H_{k} \hat{X}_{k} k - I$ $What happens when You don't have observations?$ Then you don't do correction. You just make predictions

Xo Po Initialisation ~ very very imp.	Notations re
for Kalman filter.	INOLATIONS I
for Latiman Ficter.	×K-1/K-1 ME
Predict Univer	AK-1/K-1 WIE
Predict Using	X K K-1 Me
1 motion model	P _{KIK-1} cor
	$\hat{X}_{K K-1} = \hat{X}$
Measurements	××/×-1 = ×
available ?	updated
VES	constant
	$\hat{X}_{\kappa} _{\kappa-1} = X$
update correction No It measurement not available	XK K-1 = 2
new state = predicted state	
	$X_{\mathcal{K}} = \int_{\mathcal{K}} X_{\mathcal{K}}$
New state 2	2
	even it r
Hall dillerent Game annumber 1000 - 2010 - 22	analawati
How different from sequential least squares?	acceleration
No prediction in sequential least squares ~ limitation of it	alcelerome
	with bias
	later we c
case 2: constant velocity motion $ \begin{array}{c} $	$Z_{K} = H_{k}$ $d_{k} = \begin{bmatrix} 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$ \begin{array}{c} $	$Z_{K} = H_{K} Z_{K} = \int U_{K} Z_{K} = \int U_{K$
$A \qquad \qquad X_{k} = ? \\ P_{k} = ? \\ 1. \ 1 dentify \ state$	$Z_{K} = H_{K} Z_{K} = H_{K} Z_{K} = [1]$ $d_{K} = [2]$ $g_{K} = g_{K-1}$ $d_{K} = g_{K-1}$
$ \begin{array}{c} $	$Z_{K} = H_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{K} = J_{K} \\ J_{K} = J_{K} \\ d_{K} = J_{K} \\ R_{K} = E \begin{bmatrix} J_{K} \\ J_{K} \end{bmatrix}$
1. Identify state 2. Identify measurement 3. Establish self-transition model (motion model)	$Z_{K} = H_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{K} = J_{K} \\ J_{K} = J_{K} \\ d_{K} = J_{K} \\ R_{K} = E \begin{bmatrix} J_{K} \\ J_{K} \end{bmatrix}$
1. Identify state 2. Identify measurement 3. Establish self-transition model (motion model) 4. Establish measurement model	$Z_{K} = H_{K} Z_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{K} = J_{K} \\ J_{K} = J_{K} \\ d_{K} = J_{K} \\ R_{K} = E \begin{bmatrix} 1 \\ J_{K} \end{bmatrix}$
1. Identify stale R. Identify measurement 3. Establish self-transition model (motion model) 4. Establish measurement model 5. Establish covarience reasonably	$Z_{K} = H_{K} Z_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{K} = J_{K} \\ J_{K} = J_{K} \\ d_{K} = J_{K} \\ R_{K} = E \begin{bmatrix} 1 \\ J_{K} \end{bmatrix}$
1. Identify state R =? R =? 1. Identify measurement 3. Establish self-transition model (motion model) 4. Establish measurement model 5. Establish covarience reasonably 6. Unitialise property (Xo, Po)	$Z_{K} = H_{K} Z_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{K} = J_{K} \\ J_{K} = J_{K} \\ d_{K} = J_{K} \\ R_{K} = E \begin{bmatrix} 1 \\ J_{K} \end{bmatrix}$
1. Identify stale R =? R =? 1. Identify measurement 3. Establish self-transition model (motion model) 4. Establish measurement model 5. Establish measurement model 5. Establish covarience reasonably 6. Unitialise property (Xo, Po) 7. Make suitable assumption and estimate	$Z_{K} = H_{E} Z_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{K} = J_{K} \\ J_{K} = J_{K} \\ d_{K} = J_{K} \\ R_{K} = E \begin{bmatrix} J_{K} \\ J_{K} \end{bmatrix}$
1. Identify stale R =? R =? 1. Identify measurement 3. Establish self-transition model (motion model) 4. Establish measurement model 5. Establish measurement model 5. Establish covarience reasonably 6. Unitialise property (Xo, Po) 7. Make suitable assumption and estimate	$Z_{K} = H_{k},$ $d_{K} = \begin{bmatrix} 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
1. Identify state R _k =? R _k =? 1. Identify state R. Identify measurement 3. Establish self-transition model (motion model) 4. Establish self-transition model 5. Establish measurement model 5. Establish covarience reasonably 6. Unitialise property (Xo, Po) 7. Make suitable assumption and estimate	$Z_{K} = H_{K}Z_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{1K} = J_{2K} \\ J_{K} = U_{K-1} \\ J_{K} = U_{K-1} \\ d_{K} = J_{2K} \\ R_{K} = E \begin{bmatrix} 0 \\ \varphi_{K} = E \end{bmatrix}$ $\varphi_{K} = E$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left[\bigg \bigg{c} \bigg{c} \bigg \bigg{c} \bigg)} \bigg{c} \bigg{c} \bigg)} \bigg)} \bigg{c} \bigg)} \bigg)} \bigg{c} \bigg)} \bigg)} \bigg)} \bigg{c} \bigg)} \bigg{c} \bigg)} \bigg)} \bigg)} \bigg{c} \bigg)}	$Z_{K} = H_{K}Z_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{1K} = J_{2K} \\ J_{K} = U_{K-1} \\ J_{K} = U_{K-1} \\ d_{K} = J_{2K} \\ R_{K} = E \begin{bmatrix} 0 \\ \varphi_{K} = E \end{bmatrix}$ $\varphi_{K} = E$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left(\bigg) \\ \bigg{c} \end{array} \\ \end{array} \\ \bigg{c} \end{array} \\ \bigg{c} \end{array} \\ \end{array} \\ \bigg{c} \end{array} \\ \end{array} \left(\bigg) \\ \bigg{c} \end{array} \\ \bigg{c} \bigg{c} \end{array} \\ \bigg{c} \end{array} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c}	later we consider we consider we consider we consider we consider the constance of the con
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left(\end{array} \\ \bigg \left(\bigg) \\ \bigg \left(\bigg) \\ \bigg \left(\bigg) \\ \bigg) \\ \bigg \left(\bigg) \\ \bigg \left(\bigg) \\ \bigg \left(\bigg) \\ \bigg \left(\bigg) \\	$Z_{K} = H_{K}Z_{K}$ $d_{K} = \begin{bmatrix} 1 \\ J_{K} = J_{K} \\ J_{K} = U_{K-1} \\ J_{K} = U_{K-1} \\ d_{K} = J_{K} \\ R_{K} = E \begin{bmatrix} 0 \\ \varphi_{K} \\ R_{K} \\ R_{K}$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left(\bigg) \\ \bigg \left(\bigg) \\ \bigg \left(\bigg) \\ \left(\bigg) \\ \bigg) \\ \bigg \left(\bigg) \\ \left(\bigg) \\	$Z_{K} = H_{K},$ $d_{K} = \begin{bmatrix} 1 \\ J_{2K} = J_{2K} \\ J_{2K} = U_{K},$ $J_{K} = U_{K},$ $d_{K} = J_{2},$ $R_{K} = E \begin{bmatrix} 0 \\ Q_{K} = E \end{bmatrix}$ $Q_{K} = E$ $Y_{0U} \text{ state treat}$

otation	S YEVISE:
۱	Λ means estimate \sim at κ
K-1/K-1	means used observations upto K-1 to estimate at K-1.
	means used observations up to K-1 to estimate at K.
	corresponding covarience at Kusing K-1
Х к/к-1	$= \hat{x}_{K-1/K-1} \qquad (\text{Gtationary (ase)} \\ \downarrow \\ a \text{predicted}$
v Upd <i>ate</i> i	a predicted
consta	nt relocity case
л Хк1К-1	= $\hat{\chi}_{K-1}/K-1 + V_{K-1}/K-1 \Delta t \sim motion model$
•	need velocity here
X _K =	[XK] POS ⁿ [VK] Vel.
even	it no motion still case USC \rightarrow Vr ≈ 0 (very small)
acceler	rating case
alceler	ometers on board. ~ acc also given now. fb, ba
	bias in readings.
	we can move 2D to 3D scenario. bias

$Z_{\mathcal{K}} = H_{\mathcal{K}} X_{\mathcal{K}} + \mathcal{E}_{2\mathcal{K}}$ $d_{\mathcal{K}} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathcal{J}_{\mathcal{K}} - I \\ \mathcal{V}_{\mathcal{K}} - I \end{bmatrix} + \begin{bmatrix} \mathcal{E}_{\mathcal{J}}, 2\mathcal{K} \\ \mathcal{E}_{\mathcal{V}, 2\mathcal{K}} \end{bmatrix}$
$\mathcal{D}_{\mathcal{K}} = \mathcal{D}_{\mathcal{K}-1} + \mathcal{V}_{\mathcal{K}-1} \mathcal{S}_{\mathcal{K}} + \mathcal{E}_{\mathcal{N}}$ $\mathcal{V}_{\mathcal{K}} = \mathcal{V}_{\mathcal{K}-1} + \mathcal{E}_{\mathcal{V}}$
$d_{k} = \mathcal{D}_{k} + \mathcal{E}_{d_{k}}$ $R_{k} = E\left[\mathcal{E}_{z_{k}} \mathcal{E}_{z_{k}}\right] = \sigma^{2}$
$ \widehat{\varphi}_{\mathcal{K}} = E \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{V}} \end{array} \right) \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{V}} \end{array} \right)^{T} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{V}\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}}^2 \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} \left(\begin{array}{c} \mathcal{E}_{\mathcal{N}} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right)^{T} \\ \mathcal{E}_{\mathcal{N}} \end{array} \right]$
1. J and V, uncorrelated ← { processed noise
$? \circ \circ$
You stand for 5 minute \sim take average of all observations
treat that as the initial position estimate.
$r_{0} = \frac{\sum di}{n} (initial \ position)$
$6_{n0}^{2} = \frac{6^{2}}{n} \longrightarrow 6_{n0}^{2} = \frac{n6^{2}}{n^{2}} = \frac{6^{2}}{n} (law of propogation)$

$\hat{x}_{K K-1} = F_{K-1} \hat{x}_{K-1 K-1} P_{K K-1}$	$\mathcal{I}_{K} = \mathcal{I}_{K-1} + \mathcal{O}_{K-1} \delta t + \mathcal{E}_{r}$) state transition
	$\mathcal{O}_{k} = \mathcal{O}_{k-1} + (f_{k-1} - b_{k-1})\Delta t + \mathcal{E}_{v}$ (model)
$= \begin{bmatrix} I & \Delta t \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathcal{D} V \\ V_0 \end{bmatrix}$	$b_{k} = b_{k-1} + \epsilon_{b}$
	Accellrometer has bias + noise . \sim estimate bias also as part of st
$\hat{X}_{K K} = \hat{X}_{K K-1} + K_{K} (d_{K} - \overline{Z}_{E})$ correction ~ small $\overline{Z}_{K} = H_{K} \hat{X}_{K K-1}$ it accurate prediction,	
$\overline{z}_{k} = H_{k} \hat{x}_{k k-1}$ if accurate prediction,	fixed bias unknown bias
= JLKIK-I = JLK-I/K-I + VK-I/K-I At Large if not.	
	Gauss-Markov sequence is a quantity that varies with time as
when no observations ~ you only rely on prediction.	a linear function of its previous values and a white noise sequence
	ie. by depends only on br-1 and not br-2.
Case 3: Accelerating Crane	$b_{K} = b_{K-1} + e_{K}$ where $e_{K} \sim N(o_{1} \sigma^{2})$ white noise
1 d dk	White Noise sequence is a discrete-time sequence of mutually
$f_b \sim accelerometer on board$	uncorrelated random variables from a zero mean distribution.
	For white noise W_i , $E(W_i, W_j) = \delta w^2 i=j$
	$O_{i\neq j}$
$X_{k} = \begin{bmatrix} J_{k} \end{bmatrix}$ $P_{0} = \begin{bmatrix} J_{k} \\ Z_{k} = \begin{bmatrix} d_{k} \end{bmatrix}$	
	$\hat{X}_{K K-1} = F_{K-1} \times F_{K-1} \qquad P_{K K-1}$
br l	$= \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \pi_0 \\ \nu_0 \end{bmatrix}$
Gacceleration can also be part of state if you want	LOILVOJ
	$\overline{Z}_{K} = H_{k} \hat{X}_{K K-1} = J_{K K-1} = J_{0} + V_{0} \Delta t$
	General Motion Model $X_K = F_{K-1} X_{K-1} + G_{K-1} U_{K-1} + C_{K-1}$
$\begin{bmatrix} \eta_{\mathcal{K}} \end{bmatrix} \begin{bmatrix} I & \Delta^{t} & O \end{bmatrix} \begin{bmatrix} \eta_{\mathcal{K}} - I \end{bmatrix} \begin{bmatrix} O \end{bmatrix}$	$n \times (n \times m \times n \times m \times n \times n \times n \times n \times n \times n \times $
$\begin{bmatrix} \mathcal{J}_{\mathcal{K}} \\ \mathcal{V}_{\mathcal{K}} \end{bmatrix} = \begin{bmatrix} 1 & \Delta t & 0 \\ 0 & 1 & -\Delta t \end{bmatrix} \begin{bmatrix} \mathcal{J}_{\mathcal{K}-1} \\ \mathcal{V}_{\mathcal{K}-1} \end{bmatrix} + \begin{bmatrix} 0 \\ f_{\mathcal{K}-1} \end{bmatrix} \Delta t + \mathcal{E}_{\mathcal{K}-1}$	
$\begin{bmatrix} \partial_{\mathcal{K}} \\ \mathcal{V}_{\mathcal{K}} \\ \mathcal{V}_{\mathcal{K}} \end{bmatrix} = \begin{bmatrix} 1 & \Delta t & 0 \\ 0 & 1 & -\Delta t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathcal{J}_{\mathcal{K}-1} \\ \mathcal{V}_{\mathcal{K}-1} \\ \mathcal{J}_{\mathcal{K}-1} \end{bmatrix} + \begin{bmatrix} 0 \\ f_{\mathcal{K}-1} \\ 0 \end{bmatrix} \Delta t + \mathcal{E}_{\mathcal{K}-1}$	$n_{X1} n_{Xm} m_{X1} n_{Xm} m_{X1} n_{Xm} n_{X1}$ $Z_{\mathcal{K}} = H_{\mathcal{K}} X_{\mathcal{K}} + \mathcal{V}_{\mathcal{K}}$
$\begin{bmatrix} \partial_{\mathcal{K}} \\ \mathcal{V}_{\mathcal{K}} \\ \mathcal{V}_{\mathcal{K}} \end{bmatrix} = \begin{bmatrix} 1 & \Delta t & 0 \\ 0 & 1 & -\Delta t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathcal{J}_{\mathcal{K}-1} \\ \mathcal{V}_{\mathcal{K}-1} \\ \mathcal{J}_{\mathcal{K}-1} \end{bmatrix} + \begin{bmatrix} 0 \\ f_{\mathcal{K}-1} \\ 0 \end{bmatrix} \Delta t + \mathcal{E}_{\mathcal{K}-1}$	$7 \times 1 7 \times m 7 \times 1 7 \times m 7 \times 1 7 \to $
	$n_{X1} n_{X}m m_{X1} n_{X}m m_{X1} n_{X1}$ $Z_{K} = H_{K} X_{K} + U_{K}$
Now my model has somewhat changed	$n_{X1} n_{X}m m_{X1} n_{X}m m_{X1} n_{X1}$ $Z_{K} = H_{K} X_{K} + U_{K}$ $\underbrace{H_{1}ree covariences:}_{1. E(G_{K-1} \in E_{-1}^{T}) = Q_{K-1} (process noise covarience)$ $a. P_{0} \sim X_{0} \qquad (initial covarience)$
	$n_{X1} n_{X}m m_{X1} n_{X}m m_{X1} n_{X1}$ $Z_{k} = H_{k} X_{k} + U_{k}$ $\underbrace{H_{k} Z_{k} + U_{k} + U_{k}}{H_{k} + U_{k}}$ $\underbrace{H_{k} Z_{k} + U_{k} + $
Now my model has somewhat changed	$7K1 n \times m m \times 1 n \times m m \times 1 n \times 1$ $Z_{k} = H_{k} \times K + U_{k}$ $Wree covariences :=$ $1. E(E_{k-1} \in E_{k-1}^{-1}) = Q_{k-1} (Process noise covarience)$ $3. P_{0} \sim \times o \qquad tinitial covarience)$ $3. E(U_{k} \cup V_{k}) = R \qquad (measurement noise covarience)$
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} U_{k-1} + G_{k-1}$ control input something you are	$7 \times 1 7 \times m 7 \times 1 7 \times m 7 \times 1 7 \to $
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} U_{k-1} + G_{k-1}$ control input something you are	$n_{K1} n_{K1} m_{K1} m_{K1} m_{K1} m_{K1} m_{K1}$ $Z_{K} = H_{K} X_{K} + U_{K}$ $Mree \ covariences :=$ $1. \ E(\mathcal{E}_{K-1} \mathcal{E}_{K-1}^{-1}) = \mathcal{Q}_{K-1} \ (Process \ noise \ covarience)$ $\frac{2}{3}. \ P_{0} \sim \chi_{0} \qquad (initial \ covarience)$ $3. \ E(\mathcal{U}_{K} \mathcal{U}_{K}) = R \qquad (measurement \ noise \ covarience)$
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} U_{k-1} + G_{k-1} Control input$ $something you are$ $d_{k} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{1k} \end{bmatrix} + \epsilon applying externally$	$n_{X1} n_{X}m_{XX} n_{X}m_{XX} n_{X}m_{XX} n_{XX}$ $Z_{K} = H_{K} X_{K} + U_{K}$ $Mree \ covariences :=$ $1. E(G_{K-1} G_{K-1}^{-1}) = Q_{K-1} \ (process \ noise \ covarience)$ $2. \ P_{0} \sim X_{0} \qquad (initial \ covarience)$ $3. E(U_{K} U_{K}^{-1}) = R \qquad (measurement \ noise \ covarience)$ $P \rightarrow easiest \ one \sim because \ if \ you \ understand \ how \ good \ your$
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} U_{k-1} + G_{k-1}$ control input something you are	$\begin{array}{c} n_{X1} & n_{X2} & n_{X1} & n_{X1} & n_{X1} \\ Z_{K} = H_{K} X_{K} + U_{K} \\ \hline \\ $
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} U_{k-1} + G_{k-1}$ control input something you are	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} U_{k-1} + G_{k-1}$ control input something you are	$\begin{array}{c} n_{X1} & n_{X}m & m_{X1} & n_{X}m & m_{X1} & n_{X1} \\ \hline \mathcal{Z}_{\mathcal{K}} = & H_{\mathcal{K}} \times \mathcal{K} + & \mathcal{V}_{\mathcal{K}} \\ \hline \mathcal{U}_{\mathcal{K}} = & \mathcal{U}_{\mathcal{K}} \times \mathcal{U}_{\mathcal{K}} + & \mathcal{V}_{\mathcal{K}} \\ \hline \mathcal{U}_{\mathcal{K}} = & \mathcal{U}_{\mathcal{K}} \times \mathcal{U}_{\mathcal{K}} + & \mathcal{U}_{\mathcal{K}} \\ \hline \mathcal{Z}_{\mathcal{K}} = & \mathcal{U}_{\mathcal{K}} \times \mathcal{U}_{\mathcal{K}} \\ \hline \mathcal{Z}_{\mathcal{K}} = & \mathcal{U}_{\mathcal{K}} \times \mathcal{U}_{\mathcal{K}} \\ \hline \mathcal{Z}_{\mathcal{K}} = & \mathcal{U}_{\mathcal{K}} \times \mathcal{U}_{\mathcal{K}} \\ \hline \mathcal{U}_{\mathcal{K}} = & \mathcal{U}_{\mathcal{K}} \times \mathcal{U}_{\mathcal{K}} \\ \end{array} \right$
Now my model has somewhat changed. $X_{K} = F_{K-1} X_{K-1} + G_{K-1} (K-1) + G_{K-1} Control input Something you are applying externally to control the system.$ $d_{K} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{1K} \\ \sigma_{K} \\ \sigma_{K} \\ \sigma_{K} \end{bmatrix} + \epsilon applying externally to control the system.$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} (k-1) + G_{k-1} control input something you are something you are applying externally to control the system.$ $d_{k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{k} \\ \sigma_{k} \\ \sigma_{k} \end{bmatrix} + \underbrace{\epsilon} \qquad applying externally to control the system.$ If you are standing stationary, initial state will be	$n_{K1} n_{K} m_{K1} n_{K} m_{K1} n_{K} m_{K1} n_{K1}$ $Z_{K} = H_{K} X_{K} + U_{K}$ $Mree covariences :=$ $I. E(E_{K-1} E_{K-1}^{-1}) = Q_{K-1} (process noise covarience)$ $\frac{2}{3}. P_{0} \sim \chi_{0} \qquad (initial covarience)$ $3. E(U_{K} U_{K}) = R (measurement noise covarience)$ $P \rightarrow easiest one \sim because if you understand how good your measurements are, estimates become better. eg:- QNSS - code pseudoranges It tells \ confidence \ that you have \ on \ this \ value. If ver sure assign high \ value. Q \rightarrow dirtiest \ one \rightarrow tells \ how \ good \ is your \ motion \ model.$
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} (V_{k-1}) + G_{k-1} control input something you are applying externally to control the system.$ $d_{k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{k} \\ \sigma_{k} \\ \sigma_{k} \end{bmatrix} + \underbrace{\epsilon} \qquad applying externally to control the system.$ If you are standing stationary, initial state will be initial position = 0	$n_{K1} n_{K} m_{K1} n_{K} m_{K1} n_{K} m_{K1} n_{K1}$ $Z_{K} = H_{K} X_{K} + U_{K}$ $\frac{M_{K}}{M_{K}} (ovarience) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (initial covarience)$ $\frac{Q}{Q} - X_{Q} (initial covarience)$ $\frac{Q}{Q} - X_{Q} (measurement noise covarience)$ $\frac{Q}{Q} - X_{Q} (measurement noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (process noise covarience)$ $\frac{Q}{Q} - X_{Q} (n_{K}) = Q_{K-1} (n_{K}) $
Now my model has somewhat changed. $X_{k} = F_{k-1} X_{k-1} + G_{k-1} (V_{k-1}) + G_{k-1} Control input Something you are dx = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{1k} \\ \sigma_{k} \\ \sigma_{k} \end{bmatrix} + E applying externally to control the system.$ If you are standing stationary, initial state will be initial position = 0 initial acc^{n} = 0	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$

	is Tuning of Kalman filter. ~ won't talk
	the idea is you choose a value of Q, R,
	a value of P, p and then check effective. used on observations by varying covariences.
	cumbersome process. People mostly rely on
	choose P, Q, R.
	www.ltd
Ad	can Put any no. of sensors as long
\rightarrow	as I can relate it
,-	
JIK	Accelerometer ~ have blases & need to estimate
UK	Gyroscope ~ have biases I in state vector
L br J	

QPS positioning ~ code observations ~ moving case ~ pseudorange eqns

recurrer clock bias

Assume receiver clock bias follows Gauss-Markov sequence.

state space

model tor aps

Position

 $(C_{\mathcal{F}})_{\mathcal{K}} = (C_{\mathcal{F}})_{\mathcal{K}-1} + \mathcal{E}_{\mathcal{K}-1}$

Here it is a non-linear case

velocity

 $X_{K} = \int \mathcal{I}_{K}$

19K

CK

How to check your estimates are correct or not?

() Bias vs time plot

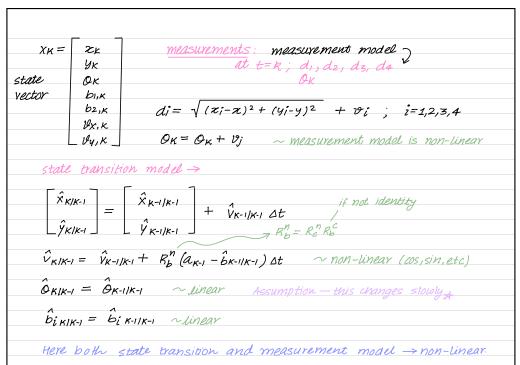
Plot how bias changes with time Our assumption was that bias changes very slowly. But if you notice large jumps in bias then some assumptions made are not correct.

	X	
	√ , large jumps	
Ь	small V	
(bias)	jumps	
-	2	
_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	K'(time)	
(2) Inno	ovation vector ~ If everythin	ng is fine then you will observe
Ľ	$\kappa = Z\kappa - \overline{Z\kappa}$ that your	innovations are white.
	* \	$i \cdot e \cdot E(I_K \mathcal{I}_{K-1}^T) = O$
	actual predicted	IK & IK-1 Uncorrelated
	observations observations	LV
		implies good value of Q
		· · ·

linear lase	
statl vector XK=	Jr Vr fr
state transition mod	el
	+ EI previously it was (fb-b) but
	+ E2 now it is true value of a cc ⁿ .
	previously we were using
bk = bk-1 + E4	accelerometer that's why bias.
JIK Dt O	
$v_{K} = 0 \mid \Delta t$	
FK 001	0 fr-1
_ br _ 0 0 0	b <i>k-1</i>
measurement model	$\chi_{k} = \begin{bmatrix} d\kappa \\ f_{k}\kappa \end{bmatrix}$
$d\kappa = J\kappa + E_{5}$	L fb ^K
$f_b^{\kappa} = f_{\kappa} + b\kappa + \epsilon_6$	$\mathcal{X}_{\mathcal{K}} = \mathcal{H}_{\mathcal{K}} \mathcal{X}_{\mathcal{K}} + \mathcal{U}_{\mathcal{K}}$

<u>Example</u> : At	} 	$= 1 0 0 0 $ $0 0 1 1 $ v_{k}
at		bk
	ana ant date callestich	an Eilter Has sates an waller
(<u>1</u>) ← both		an Filter , the rates on meas different for different senso
(2) $\equiv \leftarrow only$	bservation lsc	meter \rightarrow 200 Hz \rightarrow 200
01109	n //	$e sensor \rightarrow 100 Hz \rightarrow 100$
(Z)		
(3)	mailable have include	ing pro hubat magging mant is
		ing on what measurement is it it in the measurement m
(3) So tar seen		ing on what measurement is it it in the measurement n
50 tar seen		t it in the measurement n 1 Hz] 3 Hz / Can still combine ther
50 tar seen several other		t it in the measurement n 1 Hz]
50 tar seen several other In Kalman F		it in the measurement n 1 Hz ? 3 Hz / can still combine ther 50 Hz /
50 tar seen several other In Kalman F	let.	it in the measurement m 1 Hz ? 3 Hz / Can still combine ther 50 Hz /
50 tar seen several other In Kalman F	let.	it in the measurement n 1 Hz ? 3 Hz / can still combine ther 50 Hz /
50 tar seen several other In Kalman F	let.	it in the measurement m 1 Hz ? 3 Hz / Can still combine ther 50 Hz /
50 tar seen several other In Kalman F	let.	it in the measurement m 1 Hz ? 3 Hz / Can still combine ther 50 Hz /
50 tar seen several other In Kalman F	let.	it in the measurement m 1 Hz ? 3 Hz / Can still combine ther 50 Hz /
50 tar seen several other In Kalman F	let.	it in the measurement m 1 Hz ? 3 Hz / Can still combine ther 50 Hz /

Example: at every 1 sec interval	$l \rightarrow \chi_{K} = \begin{array}{c c} d\kappa & \sim \\ & f_{h} \kappa \\ \end{array}$	both ALC ⁿ + distance
		uistance
at every 2/500 sec inter	$Yal \rightarrow \chi_{K} = \left[fb^{K} \right] \gamma$	accelerometer
<u></u>		
	eg:- camera	60fbs
$(1) \leftarrow both position + acc^n$	odometer	60HZ
	aculerometer	400HZ
(2)		
$\equiv \leftarrow$ only accn		
(3)		
1	casel stationary	
	case 2 constant velocity	
	casez constant acc"	
several other variations possible		
In Kalman Filter ~ assumption		motion mode
is linear. What to do when eith		


Extended kalman Filter (EKF)	X K+1 K = ZK = H1
For non-linear measurement measurement Imotion model	
· Apollo Mission ~ went to moon with few kbs of RAM. They	Extende
developed this EKF. they had non-linear measurement model.	
· Beauty of this is that I dont need to estimate everything at once.	f = 10
. Takes lare of case when either of Xr or Zr non-linear.	ľ l
somehow try to linearize ~errors incorporate but okay.	state
· EKF – all other assumptions same, just non-linear Xrjzr.	XK =
Developed by NASA \sim for trajectory estimation of moon landing.	
After midsem recess ->	
EKF \sim 2D or 3D case \sim EKF for GPS positioning \sim Add INS to it	
Explore use cases eq: - Marsian Rover ~ n no. of sensors	
cameras, LiDAR, depth cameras, Inertial sensors but there is no 4PS.	
	Sta
Kalman Filter ~ become so popular from economics to electronics	
to civil everywhere.	
	Xo
	HK

:+11K = Fr X κ1κ + Er κ = ΗκXr + Vr	¥	Unearise KF
Landad Idalian E'		in a staid allow
ended Kalman Fil	TLY.	Can get rid of them
$= \sqrt{(\chi - \chi_{s})^{2} + (\eta - \eta_{s})^{2}}$	$+(z-z_s)^2 + b_{31} + b_{51}$	s + I + T + E
10.13, 0.00		
state vector m	easurement	
$\chi_{\mathcal{K}} = \left[\chi_{\mathcal{K}} \right] $	$x = [f_i] = f(x) +$	$9 = f(x_0) + \frac{\partial f}{\partial x} (x - x_0)$
Ук	f2	[X] = -16
Zĸ	•	= HK XK + (f (Xo) - HK Xo)
V _X		
Vy Vz		
אר אין	$\int n n x_1$	
state transition m	nodel $XK = XK - 1 + VK -$	1 At
	VK= YK-1+ E	
٨	(bл)к = (bл)к-1	+ <i>E</i>
XO= XKIKHI	nominal value about	which unparizing)

STEPS FOR EXTENDED KALMAN FILTER	Here no need for iterations.
	Why? Because the initial
Initialize	estimate is very close to
\checkmark	true value. Some people
- State Transition (x KIK+1)	still carry out for better
	accuracy ~ Iterative EKF
linearize measurement model	But very maginal
about Xrix+1	improvement over EKF.
\rightarrow	That's why people typically
$H_k, Z_k, \overline{Z_k} \longrightarrow I_k$	don't do that .
HA1 ~ when you change q and R,	, trajlctory changes d. i.e. your understanding

	Car >	low R highQ		[_ <i>d</i> +]	
	Assumption	. – No magnetic			
CASE-1 ; With compass		interface	Хк =	ZK	
₩ • • •				Ук	
$K = \chi K = Z$	k state vector		state	Øк	
Yb X J • yi		- V	vector	bi,ĸ	
	к 🔶 compass gives			62,K	
		es no magnetic		Vx,K	
	2,KJ interference (a			_ Uy, K _	
		as (can be equal)	ch et a	to all sitis	_
Body-Car-Navigation Vy	, K		stale	transition	ι
2 axis accelerometer ~2 acc. cc	-located cancitive a	vic are orthogonal	 ∑x̂⊭	1K-1	_
	distance wirt stati			=	1
	s heading		ĹŶĸ	14-1	
MIEW3416					
what we want? orientation of c	ar frame write navi	gation frame	VKIK-	$y = Y_{K-1/K-1}$	<i>,</i> •
we install acc in such a way to				~	
			OKIK-	$I = O_{K-1}$	۲-,
$y_b = 1 + x + a_c = R_b^c a_b$				~	
tita cosa si	$n\alpha] \alpha = 0 \Rightarrow Rb = I$	otherwise	b _{i Kl}	к-1 = biк-	.,,
The xb - since co.		to Know Rb if \$I.			
			Here	both sta	a

Fk is now jacobian	$i \cdot e \cdot F_K = \frac{\partial f}{\partial f}$
Ū.	θx
AU other assumptic	ons still same, Noise gaussian, sensor observatio
uncorrelated, etc.	•
Here we are not	deriving the equations, just understand working
whenever xr or z	tr is non-linear, we use EKF.
	y to derive generic equations.
	$X_{\mathcal{K}} = X_{\mathcal{K}-1} + Y_{\mathcal{K}-1} \Delta t + \mathcal{E}_1$
	$V_{k} = V_{k-1} + R_{k}^{n} a_{k}^{b} \Delta t + \epsilon_{2}$
	$(b_a)_r = (b_a)_{k-1} + \epsilon$
•	
	$R_{b}^{n} = \begin{bmatrix} cos Q & sin Q \end{bmatrix}$
•	L-sing coso
$Zr = \begin{bmatrix} d_1 \end{bmatrix}$	
d2	acceleration — part of control input
dz dz	$X_{K} = F_{K-1}X_{K-1} + G_{K-1}U_{K-1}$
us	

	Jacobian ->
$\chi_{0}, f_{0}, Q \longrightarrow F_{K-1} \longrightarrow \dot{\chi}_{K K-1} \longrightarrow H_{K}$	$F_{K} = \frac{\partial f}{\partial x} \Big _{x = \hat{x}_{K K-1}}$
	$\partial X _{X = \hat{X} \times K - 1}$
$\hat{X}_{K K-1} = \hat{X}_{K K-1} + K_{K} I_{K} ; I_{K} = Z_{K} - I_{K}$	$Z_{k} \qquad H_{K} = \frac{\partial Z}{\partial x} \bigg _{x = \hat{x}_{K K-1}} \int$
T Innov	
$P_{K K-1} = F_{K-1} P_{K-1 K-1} F_{K-1} + Q_{K-1}$	a licro
What is the consequence of this assu	mption? conservative
A 1	
$O_{K K-1} = O_{K-1 K-1} + \mathcal{L}_{K-1}$	rash driver
Random Noise	
pepends on	
1. Behaviour of person	
2. Dynamics of vehicle/type (biRe/car)	
aircraft you can't abrupty change traj	ectory
drone you can change abruptly	
3. Road type	
Mining acturacy poor at	· EK-1 IOW - conservative
Boad	Gr-1 high-rash driver
KAAA	

$\begin{array}{l} P \rightarrow \ Po \ we \ get \ P \ easily \\ Q \rightarrow \ confidence \ on \ your \ model \ on \ model \\ R \rightarrow \ confidence \ on \ your \ measurements \ \ quality \ of \ measurement \\ \hline There \ are \ various \ scenarios \ like \ teeling \ sleepy, \ 4Ps \ gave \ poor \\ accuracy, \ etc. \ All \ mesc \ behaviours \ nave \ to \ be \ captured. \\ Getting \ Q \ is \ a \ part \ of \ stochastic \ model. \ Capture \ them \\ in \ \ \mathcal{E}_{K} \rightarrow Q \ R \ \sim \ randomness \\ \hline People \ say \ getting \ a \ filter \ to \ run \ is \ art \ + \ science. \\ \hline \end{array}$	Challenge
$\begin{array}{llllllllllllllllllllllllllllllllllll$	How to get correct values of P, Q, R?
$\vec{R} \rightarrow confidence on your measurements - quality of measurement There are various scenarios like teeling scepy, 4PS gave poor accuracy, etc. All these behaviours have to be captured. Getting Q is a part of stochastic model. Capture thenjw \in_{K} \rightarrow Q \downarrow R \sim randomnessPeople say getting a filter to run is art + science.V$	
There are various scenarios like teeling sleepy, 4PS gave poor accuracy, etc. All these behaviours have to be captured. Getting Q is a part of stochastic model. Capture then in $\mathcal{E}_{\mathcal{R}} \rightarrow Q\mathcal{L}\mathcal{R} \sim randomness$ People say getting a filter to run is art + science.	Q -> confidence on your model on model
accuracy, etc. All these behaviours have to be captured. Getting Q is a part of stochastic model. Capture then $iw \in_R \rightarrow QLR \sim randomness$ People say getting a filter to run is art + science. V	$R \rightarrow$ confidence on your measurements — quality of measurement
accuracy, etc. All these behaviours nave to be captured. Getting Q is a part of stochastic model. Capture them in $\mathcal{E}_R \rightarrow Q \downarrow R \sim randomness$ People say getting a filter to run is art + science. V	There are various scenarios like teeling sceepy, 4PS gave poor
Getting Q is a part of stochastic model capture them $j_{W} \in \mathcal{E}_{K} \rightarrow Q \downarrow R \sim randomness$ People say getting a filter to run is art + science. V	accuracy, etc. All mesc behaviours have to be captured.
in $\mathcal{E}_{\mathcal{K}} \rightarrow \mathcal{Q} \downarrow \mathcal{R} \sim randomness$ People say getting a filter to run is art + science. V	
V	
	People say getting a filter to run is art + science.
	\vee
get Qik Lbuilts)	get QIR (beliefs)

	Ук		
• ×6	Øк		
	bi,K		
· (z,y)	62,к Их.к		
Body-Car-Navigation	Vy,K_		
		4	
2 axis accelerometer			
Ranging sensor			
single axis gyroscope			
Ь			
Wib			
$\dot{o} = \omega$ know this	a in hada A		
N = 0 KNOW THE	s in body fr	ame	

CASE-3: With gyroscope + con	upass both	6	
ж <u>л</u> •	<u> </u>	٦	
$K = \sqrt{2} X = 1$	ZK	state vector	
46 7	Ук		
• xb	Øк		
	Ы,К		
(x_{1y})	62,K		
$\rightarrow X_N$	VX,K		
Body-Car-Navigation	Vy, K_		
2 axis accelerometer			
Ranging sensor			
single axis gyroscope			
compass			

Have a cup of tea or coffee!	$\begin{bmatrix} x \end{bmatrix} f_{a} = R_{b}^{b}a_{a} + b$
	$\begin{array}{c c} x & f_b = R_n^b a_n + b \\ y & f_b & f_b \\ \end{array}$
White all equis on a sheet of paper without seeing anything from notes for all three cases	vx aculerometer reading
Best way to learn!	b, If you want to add this to measurement,
1. compass au	
2. gyroscope Write Materias clearly on paper.	bz You have to add an in state vector
3. gyroscope + compass both	
	$a_n \downarrow \kappa \qquad z = Hx$
2 what is size of 7 2 sus	$Q_{\kappa} = Q_{\kappa-1} + \omega \Delta t$
What is size of Z _K ? 5xs Hk ² 5x7	$\mathcal{O}R = \mathcal{O}E - 1 + \mathcal{O}\Delta t$
HK 2 5×7 FL 2 7×7 / B×8	how this measurement related with what y
VK ? 3X/	are observing i.e. state vector?
,	
9× ?	$(\mathcal{O}_{\mathcal{K}})_{\mathcal{M}} = \mathcal{O}_{\mathcal{K}} + \mathcal{O}$
$\chi_{\mathcal{K}} = F_{\mathcal{E}-1}\chi_{\mathcal{K}-1} + G_{\mathcal{K}-1}U_{\mathcal{K}-1} + \mathcal{E}$	
$\mathcal{L}_{GK} = ?$	
GNSS JINS Integration Yb Xb Banging sensor 2- Accelerometer Compass	apply least squares to distance to get the positions. Instead of using distances in measurement, I want to us those computed positions as part of measurement. By doing so, I remove the non-linearity in the measurement model.
(x14) 1-44105CO PE	$\chi = \chi$
1/P •	y Loosely Coupied.
X_{N}	z
Two ways of solving this problem	
	$(x)_{in} = X_{K}$
1) measurement model $z = d_1$	use computed observations
dz Tightly Coupled	
d4	
0	eg: - GPS sometimes gives you pseudoranges ~ use tightly ca
	eg:-UPS sometimes gives you pseudoranges~use tightly con UPS sometimes gives you positions ~use loosely cou
0	lg:-UPS sometimes gives you pseudoranges ~ Use tightly ca UPS sometimes gives you positions ~ use loosely cal
Ø	lg:-UPS sometimes gives you pseudoranges~use tighty ca UPS sometimes gives you positions ~use loosely cau
Ø	lg:- UPS sometimes gives you pseudoranges ~ use tightly ca UPS sometimes gives you positions ~ use loosely ca
Ø	lg:-4PS sometimes gives you pseudoranges~use tighty ca 4PS sometimes gives you positions ~use loosely ca

Advantage of tightly of	coupled systems:-	
I) If only two distances an	vailable d1, d2, you can use tightly	
coupled $z = \lceil d, \rceil$ but	you can't do loosely coupled.	
$z = \begin{bmatrix} x \end{bmatrix} \sim z$	can't aet derived observations x, y, z	
	can't get derived observations x,4,2	
2. In IAASALIN COUNTRA VIA	u are using least squares twice. Once	
for computing position	ns second, while doing updates. This is	
not an optimal solu	ns second while doing updates. This is	
Assumptions so far:		
1. ignored gravity] now write complete model	
2 ignored rotation of		
3. 2. <i>p Ca</i> se	for full 3D case.	
use aNSS measurement	ts — n satellites available	
$Z_{nx} = f(x) + V$	(pseudorange observation model)	
$f_i = \sqrt{(x-x_i)^2 + (y-y_i)}$	$^{2} + (z - z_{1})^{2} + b_{1} + V$	
Tou to reduce the of u	inknowns through some means.	

bз,д Ф ? roll, pitch, yaw Ó Ψ Tereiver clock bias br 16X1 3x*3* $\left\{-2\left(\vec{w}\times\vec{v}\right)\Delta t=-2\vec{x}V\right\}$ $(ba)_{K+1} = (ba)_{K} + \epsilon$ $(b_g)_{K+1} = (b_g)_K + \epsilon$ skew-symmetric matrix of this vector $(b_n)_{K+1} = (b_n)_K + \epsilon$ Euler angles $\phi_{K+1} = \phi_K + \phi_{\Delta b} + \epsilon$ now to find these rate of changes \$, 0, 2 2 OK+1 = OK + OAt + E $\psi_{K+1} = \psi_{K} + \psi_{\Delta t} + \epsilon$

UNSS

X =

→Xn

(X14)

0

3-axis Accelerometer 3-axis Gyroscope

X

IN

positions

Velocity

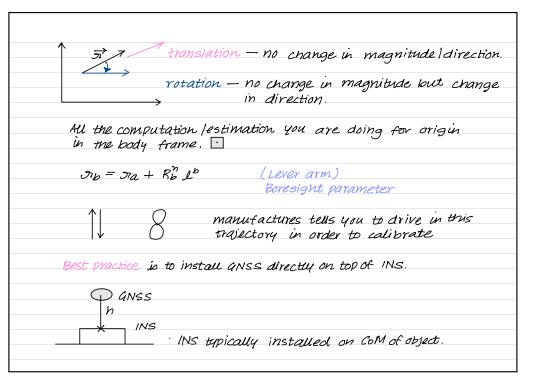
acc bias

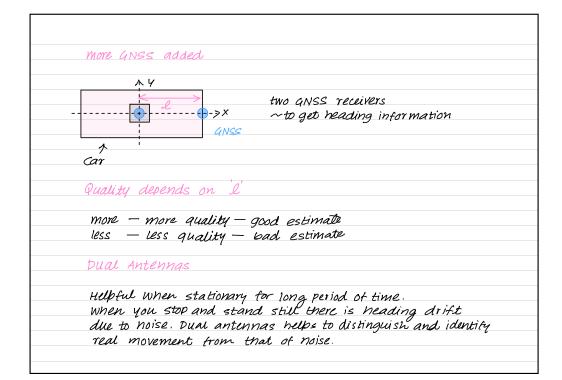
gyno. bias

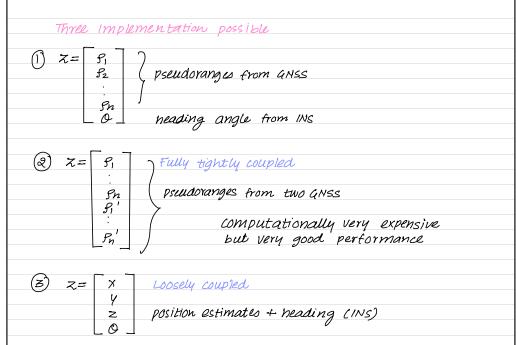
Y Z) ZX ZY

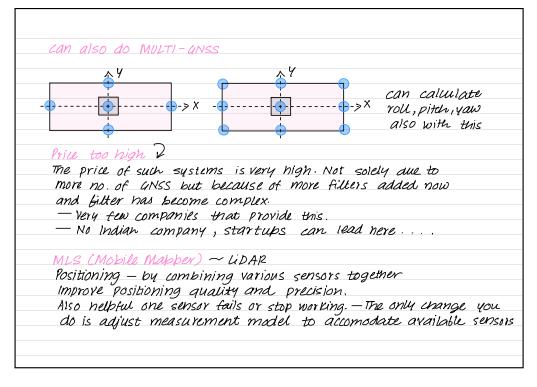
Vz bija

b2,а b3,а b1,д

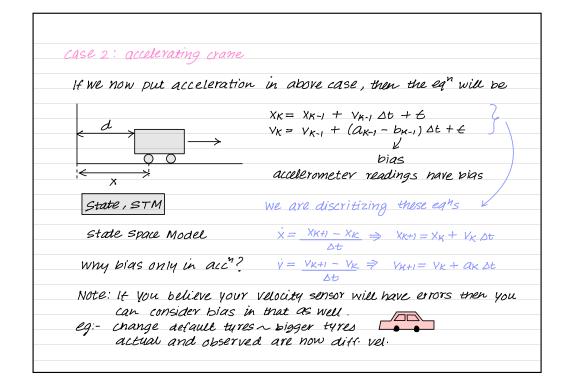

62,9


State transition model $\mathcal{I}_{K+1} = \mathcal{I}_{K} + V_{K} \Delta t + \mathcal{E}$ $\mathcal{V}_{K+1} = \mathcal{V}_{K} + \mathcal{R}_{b}^{n}(\mathcal{F}_{b} - b_{a}) \Delta t + \mathcal{E} - \mathcal{G}_{a}^{n} t - (\overline{\omega}^{n} \times \overline{\mathcal{V}_{k}}) \Delta t$ coriolis force includes net added to gravitational effect gravity added to compensate compensate for g in navigation frame. earth's rotation.


$z \qquad y \qquad z_{x} \qquad z_{y} \qquad z_{y$	
	no longer rotation matrix. (bloz these are euler angles)
>×	$= \mathcal{Q}_{K-1} + \mathcal{R} \omega \Delta t$
$\begin{bmatrix} \phi \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 1 & \sin\phi \tan \phi & \cos\phi & \tan \phi \\ 0 & \cos\phi & -\sin\phi \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi \sec\phi & \cos\phi & \sec\phi \\ (need not rem this) \end{bmatrix}$	 ωz


UNSS Integration		
LCEFY ECI	лк Vк Oк ba, к bg, к	$\dot{\mathcal{I}} = V$ $\dot{\mathcal{V}} = R_{D}^{\mu} (f_{D} - f_{A}) - g^{\mu} - 2 \overline{ue} \times \overline{\mathcal{P}}^{\mu}$ $\dot{\mathcal{O}} = R (w_{i}b^{\mu} - b_{g}) - w_{e}$ $\dot{b} = 0$
ENU	אותפ	
$P_{i,k} = \sqrt{(X-X)}$	$14 + (4-4i)^2 + ($	
		$Z-Z_i)^2 + b_{\mathcal{H},i} + \mathcal{Y}_{i,k}$ $\chi_{K+1} = F_K \chi_K + G_K \chi_K + E_k$
$\mathcal{Z}_{\mathcal{K}} = H_{\mathcal{K}} \times_{\mathcal{K}}$		$\chi_{K+1} = F_{\kappa} \chi_{\kappa} + G_{\kappa} \chi_{\kappa} + \epsilon_{\kappa}$
$Z_{K} = H_{K} X_{K}$		$X_{K+1} = F_{K} X_{K} + G_{K} X_{K} + C_{K}$ $X_{K+1} = X_{K} + f(X_{K}) \Delta t$
$\mathcal{Z}_{\mathcal{K}} = H_{\mathcal{K}} \times_{\mathcal{K}}$ \downarrow $n \times 16$		$X_{K+1} = F_{K} X_{K} + G_{K} X_{K} + E_{K}$ $X_{K+1} = X_{K} + f(X_{K}) \Delta t$ $X_{K+1} = X_{K} + \partial f (X - X_{0}) \Delta t$
$\mathcal{Z}_{\mathcal{K}} = H_{\mathcal{K}} \times_{\mathcal{K}}$		$\begin{aligned} \chi_{K+1} &= F_{E} \chi_{K} + G_{K} \chi_{K} + \mathcal{E}_{K} \\ \chi_{K+1} &= \chi_{K} + \mathcal{F}(\chi_{K}) \Delta t \\ \chi_{K+1} &= \chi_{K} + \frac{\partial \mathcal{F}}{\partial \chi} \Big _{\substack{\chi = \chi_{0} \\ \chi = \chi_{0}}} \end{aligned}$
$\mathcal{Z}_{\mathcal{K}} = H_{\mathcal{K}} \times_{\mathcal{K}}$ \downarrow $n \times 16$	+ 12K	$X_{K+1} = F_{K} X_{K} + G_{K} X_{K} + E_{K}$ $X_{K+1} = X_{K} + f(X_{K}) \Delta t$ $X_{K+1} = X_{K} + \partial f (X - X_{0}) \Delta t$
$Z_{K} = H_{K} \times_{K} + \frac{1}{n \times 16}$ $\dot{X} = f(X)$ $X_{K+1} - X_{K} + \frac{1}{n \times 16}$	+ 12K	$X_{K+1} = F_{K} X_{K} + G_{K} X_{K} + E_{K}$ $X_{K+1} = X_{K} + f(X_{K}) \Delta t$ $X_{K+1} = X_{K} + \frac{\partial f}{\partial x} \Big _{X=X_{0}} (X-X_{0}) \Delta t$ $Pug \ x = X_{K}$

< C	losed Loop	people	generally use closed loop
_↓	· ·	, ,	not open loop implementation
Prediction			
<u></u>			preferred implementation.
date	·Tightly	coupled "	closed loop 4
	·LOOSely		Open loop
X			
XKIK			
XKIK			
•	ctical problem	faced in	the implementation?
••	ctical problem	faced in	the implementation?
What prac			-
What prace Assumption	$n \rightarrow All sensor.$	s located a	the implementation? at same point.
What prace Assumption		s located a	-
What prace Assumptic	$n \rightarrow All sensor.$	s <i>located</i> . possible.	-
What prace Assumptic	$n \rightarrow All sensor.$	s located a	-
What prace Assumptic	n → All sensor. Practically	s located . possible . L ^b	-
What prace Assumptic	n → All sensor. Practically	s <i>located</i> . possible.	-
What prace Assumptic	n → All sensor. Practically	s located . possible . L ^b	-

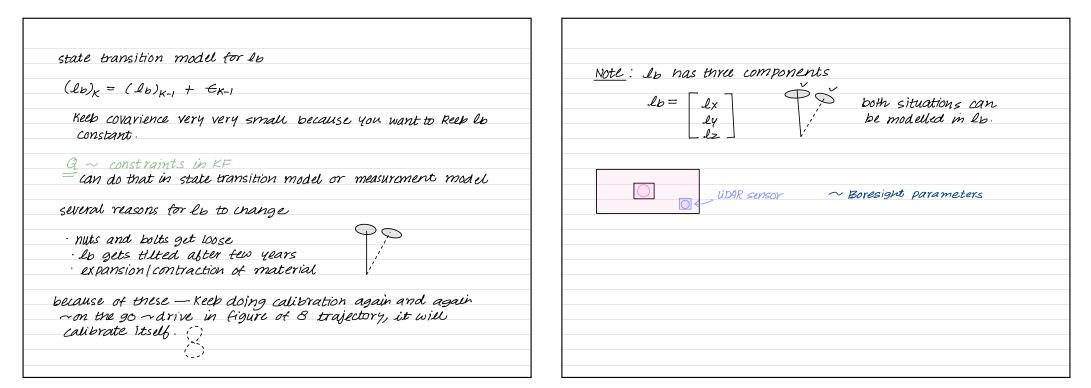


CASE 1 : constant velocity	state vector: X_K , U_K
	measurement = $d_{\mathcal{K}}$
d	$\hat{d}_{\kappa} = \hat{x}_{\kappa}$ (measurement model)
$ $ $) \longrightarrow$	$X_{K} = X_{K-1} + \mathcal{P}_{K-1} \Delta t + \epsilon$] (state transition
	$V\kappa = V\kappa - l + \epsilon$
\longleftrightarrow	
X	$Q = \begin{bmatrix} \\ 0 \end{bmatrix}$
State, STM	~ \ \
2000,2111	
state space Model	
	The most challenging part-getting Q
	People generally take it from least
	squares. Once you do estimate from
	least squares you have some idea.
	iense squares que nove some idea.

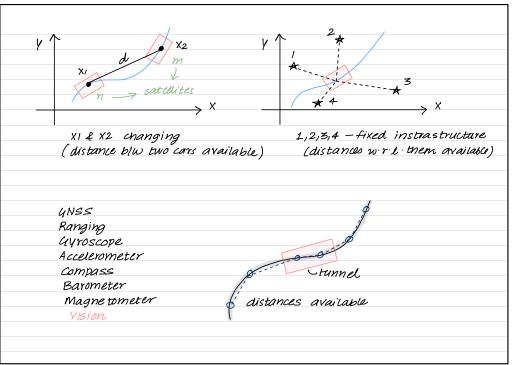
QUIZ-2(KF/EKF)	(Open-notes quiz)
D accelerometer put on a vehicle	moving with constant
velocity in a straight line.	9
can you estimate the orienta	tion of sensor using Kalman
Filter from accelerometer read	lings. If yes, how?
Properly define all assumption	s, state space model and
other models along with proper	r steps.
Assumptions	
1. Error is additive, white, gaussia	an.
2. Insignificant notation and a	
LNO votation and acceleration	(n)
3. Rotation of earth not considered	d
4. No biases in accelerometer obs	ervations.
5. Gauss-Markov for QK, XK i.e. ro	U, pitch changes gradually.

z = h(x) + v	
$H_{\mathcal{K}} = \frac{\partial h}{\partial \varkappa} \Big _{\chi = \frac{1}{\chi_{\mathcal{K}}}_{\mathcal{K}}_{\mathcal{K}}}$	$\hat{\chi}_{K K-1} = \hat{\chi}_{K/K-1} + K_{K} I_{K}$
$Z_{K} = Z_{K} + H_{K}(X - X_{0}) + V$	$\overline{Z_k} = h(\hat{X_k}_{k-1})$
$X_{K} = H_{E} X_{K} + (Z_{0} - H_{E} X_{E}) + V$	

$tan0 = \frac{z}{\sqrt{x^2 + y^2}}; tan\alpha = \frac{y}{x}$ $state \ vector \ x_k = \begin{bmatrix} 0_K \\ \alpha_K \end{bmatrix} \ roll \ 2 \ or \ ientation$ $measurement \ model \ z_k = h(x_k) + v_k \approx \frac{H_k X_k + v_k}{3x^2 2x^1} \frac{y_k}{3x_1}$ $z_k = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = \begin{bmatrix} gcos0 \ cosl \\ gsin\alpha \end{bmatrix} + v_k$ $\frac{\partial f_x}{\partial \Theta} \frac{\partial f_x}{\partial \alpha}$ $\frac{\partial f_y}{\partial \Theta} \frac{\partial f_z}{\partial \alpha}$ $\frac{\partial f_z}{\partial \phi} \frac{\partial f_z}{\partial \alpha}$	State vector $X_{K} = \begin{bmatrix} \mathcal{O}_{K} \\ \alpha_{K} \end{bmatrix}$ roll α_{K} pit	
$\begin{array}{c} measurement \ model \ \ Z_{k} = \ h(X_{k}) + U_{k} \ \approx \ H_{k}X_{k} + \ U_{k} \\ 3 \times 2 \ 2 \times 1 \ 3 \times 1 \\ \hline \\ Z_{k} = \ \left[\begin{array}{c} f_{X} \\ f_{Y} \\ f_{Z} \end{array} \right] = \ \left[\begin{array}{c} gcos 0 \ cost \\ gcos 0 \ sind \\ f_{Z} \end{array} \right] + \ U_{k} \\ \hline \\ gsind \\ \hline \\ \hline \\ \partial \theta \end{array} \right] + \ U_{k} = \ \left[\begin{array}{c} \partial f_{x} \\ \partial f_{x} \\ \partial \theta \end{array} \right] \\ \hline \\ \partial f_{y} \\ \partial \theta \end{array} \right] \\ \hline \\ \partial f_{z} \\ \partial f_{z} \\ \hline \\ \partial f_{z} \end{array} \right]$	·	l Corientation. Ch J
$Z_{k} = \begin{bmatrix} f_{x} \\ f_{y} \\ f_{z} \end{bmatrix} = \begin{bmatrix} gcos@cosd \\ gcos@sin@ \\ gsin@ \\ \end{bmatrix} + y_{k} $ $H_{k} = \begin{bmatrix} \partial f_{x} \\ \partial f_{x} \\ \partial \partial \partial a \\ \\ \partial f_{y} \\ \partial f_{y} \\ \partial f_{z} \\ \partial f_{z} \end{bmatrix}$	measurement model. $Z_{k} = h(x_{k}) +$	
$\begin{array}{c c} f_{4} & g\cos\theta\sin\theta & H_{k} = & \frac{\partial f_{x}}{\partial \theta} & \frac{\partial f_{x}}{\partial \alpha} \\ f_{z} & g\sin\alpha & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		
$ \begin{bmatrix} f_z \end{bmatrix} \begin{bmatrix} g_{sin} \alpha \\ \partial f_y \end{bmatrix} \begin{bmatrix} \partial f_y \\ \partial f_y \\ \partial \phi \end{bmatrix} \begin{bmatrix} \partial f_y \\ \partial f_z \end{bmatrix} \begin{bmatrix} \partial f_z \\ \partial f_z \end{bmatrix} $	$Z_{k} = f_{x} = gcos O cos + y_{k}$	
$\begin{bmatrix} f_{2} \\ g_{3} \\ g_{4} \\ g_{6} \\ g_{7} \\ g_$		$H_{\mathcal{K}} = \frac{\partial f_{\mathcal{K}}}{\partial \Omega} = \frac{\partial f_{\mathcal{K}}}{\partial \alpha}$
do da dfz dfz	_fzgsin ~_	
Ofz Ofz		

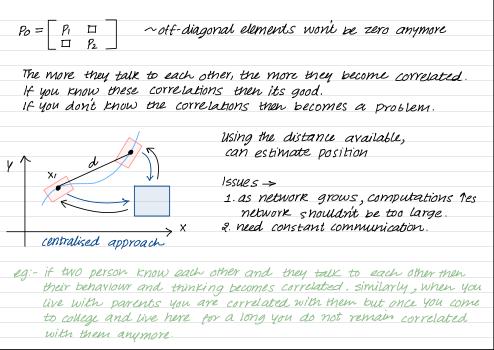

state tran	sition m	odel		imale the orientation using reading from		
0 - 0				(44 roscope, compass and accelerometer)		
$O_{K} = O_{K-1} + E_{K-1}$ (Gauss Markov) $\alpha_{K} = \alpha_{K-1} + E_{K-1}$				n KF/EKF? Write all assumptions, proper		
$\alpha_K = \alpha_{K}$	1 + Ek-)	steps and	models.		
V F	1		(0)0000000	endances alor and a colores (see) as let let a		
$X_{\mathcal{K}} = F_{\mathcal{K}}$:-1 X K-1 =	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathcal{O}_{K-1} \\ \mathcal{A}_{K-1} \end{bmatrix}$	Lompass, a	ccelerometer, gyroscope — sensor fusion with KFJEKi		
			state vec	$\begin{array}{c} tor \chi_{\mathcal{K}} = \begin{bmatrix} \mathcal{O}_{\mathcal{K}} \\ \mathcal{C}_{\mathcal{K}} \\ \mathcal{U}_{\mathcal{K}} \end{bmatrix} \end{array}$		
Kalman Filter: 1. Initial state and covarience Xo, Po						
			state trai			
z. preduc 3. measu		state transition model	state trav	nsition model		
4. COYYEL			$\mathcal{O}_{K} = \mathcal{O}_{K-1}$	+		
5 Adding	and i	pdate P, Q, R throughout	$Q_{k} = Q_{k-1}$			
6. find		www.iry, n unougnow				
0. J-120	NK		76-96-	$ \begin{array}{c} \downarrow + \psi \Delta t \\ \downarrow & \\ \downarrow & \\ \downarrow & \\ \psi_{ib} - (\psi) - \psi_{g} \end{array} \end{array} $		
	If bo	dy is non-rotating and non-accelerating,	n= R[n	$b = -\omega - ba$		
1		can use accelerometer to find orientation.) to estimate these include them		
///		is accelerating, you can't use it to find orientation.		$0 = R(w_{ib} - b_g) $ (as part of control unit. If acc,		
1 de la companya de l	40	ar anne plauina - other with realize - acceleration		à, à also gyro considered in state, no need.		
	EY.	a garre playing - prono with no gyro - alcabating	5///////	(-1, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4		
		car game playing — phone with no gyro – accelerating can't control game (,)				
measur	ement i			nsidered other sensor readings as well then		
	ument ;		Auter : 14 co	nsidered other sensor readings as well then		
measur Zr =	eement ; [fx]	nodel	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \end{bmatrix}$	nsidered other sensor readings as well then fx=fa-b?		
	eement ; [fx]		$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \end{bmatrix}$	nsidered other sensor readings as well then		
	ument ;	nodel } accelerometer observations	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{Z} \end{bmatrix}$	nsidered other sensor readings as well then fx=fa-b fy fz fz		
	eement ; [fx]	nodel } accelerometer observations — assuming no magnetic heading i.e.	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \omega_{X} \end{bmatrix}$	nsidered other sensor readings as well then fx=fa-b?		
	eement ; [fx]	nodel } accelerometer observations — assuming no magnetic heading i.e. compass gives true heading	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then fx = fa - b fy frue values i.e. without bias fz fx, fy, fz and O relationship		
	eement ; [fx]	nodel Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from, magn.	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \omega_{X} \end{bmatrix}$	nsidered other sensor readings as well then fx = fa - b fy fy fz fz		
	eement ; [fx]	nodel } accelerometer observations — assuming no magnetic heading i.e. compass gives true heading	$Auter: If CO$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix}$	nsidered other sensor readings as well then fx = fa - b fy frue values i e without bias fz fx, fy, fz and O relationship		
	eement ; [fx]	nodel accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $\mathcal{P}_{\tau} = \mathcal{P}_{M} - \Delta$	$Auter: If CO$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then fx = fa - b fy frue values i.e. without bias fz fx, fy, fz and O relationship		
	eement ; [fx]	nodel accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $\psi_{\tau} = \psi_{m} - \lambda$ $\psi_{\tau} = \psi_{m} - \lambda$	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then $f_x = f_a - b$ f_y true values i.e. without bias f_z f_x, f_y, f_z and Q relationship $H_K \times K \sim highly non-linear problem$ biases in accelerometer and gyroscope. $h_{ing} + 3 acc bias \qquad 7$		
	eement ; [fx]	model Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $v_{\tau} = v_{m} - \lambda$ $v_{\tau} = v_{\tau} - \lambda$ $v_{\tau} = v$	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then $f_x = f_a - b$ f_y f_z f_x, f_y, f_z and Q relationship $H_K \times K \sim highly non-linear problem$ biases in accelerometer and gyroscope.		
Zκ = X 	$\left[\begin{array}{c}f_{x}\\f_{y}\\f_{z}\\\psi_{t}\end{array}\right]$	model Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $\psi_{\tau} = \psi_{m} - \Delta$ $\psi_{-} = \psi_{-} - \Delta$ $\psi_{-} = \psi_{-} - \Delta$ $\psi_{-} = \psi_{-} - \Delta$	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then $fx = fa - b$ fy fy fz fz fz $fx, fy, fz and O relationship$ $H_K \times K \sim highly non-linear problem$ $biases in accelerometer and gyroscope.$ $ling + 3 acc bias$ $XK = 15 \times 1 \ Vector$		
Zκ = X Y Z	$\left[\begin{array}{c}f_{x}\\f_{y}\\f_{z}\\\psi_{t}\end{array}\right]$	model Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $v_{\tau} = v_{m} - \lambda$ $v_{\tau} = v_{\tau} - \lambda$ $v_{\tau} = v$	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then $fx = fa - b$ fy fy fz fz fz $fx, fy, fz and O relationship$ $H_K \times K \sim highly non-linear problem$ $biases in accelerometer and gyroscope.$ $ling + 3 acc bias$ $XK = 15 \times 1 \ Vector$		
Zr = X Y Z tanO	$\left[\begin{array}{c}f_{x}\\f_{y}\\f_{z}\\\psi_{t}\end{array}\right]$	model Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $v_{\tau} = v_{m} - \lambda$ $v_{\tau} = v_{\tau} - \lambda$ $v_{\tau} = v$	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then fx = fa - b fy fy fz fz fx, fy, fz and O relationship HKXK ~ highly non-linear problem biases in accelerometer and gyroscope. hing + 3 acc bias ading + 3 gyro bias XK = 15X1 vector tion This is called AHRS This will tell you roll, pitch and you		
Z _E = X Y Z tanQ tanQ Assur	$\left[\begin{array}{c}f_{x}\\f_{y}\\f_{z}\\\psi_{\tau}\end{array}\right]$	nodel Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $2p_{\tau} = 2p_{m} - \Delta$ $\psi \psi \rightarrow declenation$ true magnetic To find orientation, $Q_{1}a \rightarrow KF$ since linear model $Q_{1}a_{1}y \rightarrow EKF$ since non-linear model	$Auter: If co$ $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then fx = fa - b fy fy fz fz fx, fy, fz and O relationship HKXK ~ highly non-linear problem biases in accelerometer and gyroscope. hing + 3 acc bias ading + 3 gyro bias $XK = 15 \times 1 \ vector$ tion This is called AHRS This will tell you rol, pitch and yau		
Z _E = X Y Z tanQ tanQ tanQ	$\left[\begin{array}{c}fx\\fy\\f_{z}\\\psi_{T}\end{array}\right]$	nodel Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $p_{\tau} = 2p_{m} - A$ $\downarrow \downarrow$ declenation true magnetic To find orientation, $Q_{i}a_{i} \rightarrow KF$ since linear model $Q_{i}a_{i}p_{i} \rightarrow EKF$ since non-linear model for jacobian	Auter: If co $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then fx = fa - b fy fy fz fx, fy, fz and O relationship $H_{K} \times \kappa \sim highly non-linear problem$ biases in accelerometer and gyroscope. ding + 3 acc bias ading + 3 gyro bias $X\kappa = 15 \times 1 \ vector$ tion This is called AHRS This will tell you roll, pitch and you only using accelerometer and gyrosco		
Zr = X Y Z tanO tanQ Assur I. Igi Q. A	$\left[\begin{array}{c}f_{x}\\f_{y}\\f_{z}\\\psi_{T}\end{array}\right]$	nodel Accelerometer observations — assuming no magnetic heading i.e. compass gives true heading it not there, remove declenation from magn. $2p_{\tau} = 2p_{m} - \Delta$ $\psi \psi \rightarrow declenation$ true magnetic To find orientation, $Q_{1}a \rightarrow KF$ since linear model $Q_{1}a_{1}y \rightarrow EKF$ since non-linear model	Auter: If co $X_{K} = \begin{bmatrix} f_{X} \\ f_{Y} \\ f_{z} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nsidered other sensor readings as well then $fx = fa - b$ fy fz fz fz $fx, fy, fz and O relationship$ $H_{K} \times \kappa \sim highly non-linear problem$ $biases in accelerometer and gyroscope.$ $ling + 3 acc bias$ $X\kappa = 15 \times 1 \ vector$ tion		

1HRS	INS
gives orientation only	gives orientation + position
less cost	· more cost
simpler KF	· complex KF
no GPS	· GPS V
predic	ting
error	correcting


UNSS IINS Integratio	n UNSS, INS are not co-located.
4NSS 99 INS B TTTTTTTTTT body frame	Lever arm Lever arm is always in body frame if you, know, treat It as constant if you don't Know treat as part of state
state vector X _K =	
measurement model	$Z_{R} = \begin{bmatrix} X_{4} \\ Y_{4} \\ Z_{4} \end{bmatrix} \qquad $

	What is the quality check?
	, stabilised lp ~ filter Okay
u	lb Mmmm
	K (time)
	leverarm values snould be constant over time, then the
	filter is stabilised.
	Assumption was $l_b = constant$, if this was correct then
	you should get a constant value of lb over time.
	Two ways to calibrate
	1. calibrate in lab beforenand, you keep lb as constant
	Q. On-site calibration \rightarrow keep lb as unknown value and
	estimate along state. (Ib as part of state)
	Better to calibrate on the go ~ one more computation.
	because the value is subject to change.

lf bo	th sensors (GNSS and INS) are co-located.
	$ \begin{array}{c} X_{\mathcal{A}} \\ Y_{\mathcal{A}} \\ Z_{\mathcal{A}} \\ \mathcal{L} \\ L$
	ney are not co-located, as here, the model will be
X Y Z	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Z=	h(x) + V
=	$z_o + \frac{\partial \eta}{\partial x}\Big _{x=x_o} (x-x_o)$



	APPLICATIONS PART
COOPErative Po	ssitioning (collaborative or peer-to-peer positioning)
××	V2x [venice -to -every thing]
*	V2V VZI
¥*	(venide-to-venicle) (venide-to-infrastructure,
	talk to each other and exchange information directly ate relative positioning also using sensors.
ru can incorpora	
u can incorpore Advantages :	ate relative positioning also using sensors.
u can incorpore Advantages: 1. By applyin	
u can incorpore Advantages: 1. By applyin	ate relative positioning also using sensors. g the constraint, the uncertainty in position duced. i.e. increased accuracy.
u can incorpora Advantages: 1. By applyin can be re 2.	ate relative positioning also using sensors. g the constraint, the uncertainty in position duced. i.e. increased accuracy.
u can incorpora Advantages: 1. By applyin can be re 2.	ate relative positioning also using sensors. g the constraint, the uncertainty in position duced. i.e. increased accuracy. cars inside tunnel { you can make them talk to cars outside tunnel { each other and share some
ru can incorpora Advantages: 1. By applyin can be re	ate relative positioning also using sensors. g the constraint, the uncertainty in position duced. i.e. increased accuracy.

	Apple technologies
sensors used to measure distance	
	1. Find My — your device send a signal to other nearby apple
1. Laser range finder	devices and that sends securely to icloud and you can find
disadvantage: you need clear line of sight	the location of your lost iPhone.
2. UWB (Ultra-Wideband)	2. Aintag - It uses Ultra-Wideband (UWB). The UI chip uses
advantage: you need not have clear line of sight. It can also	UWB to measure distance and direction blw devices. In this
pass through walls. Of course quality degrades somewhat but	way they communicate with your apple devices and FindMy.
okay and workable unless so many walls. They are cheaper	
as Well (5 units cost ≈ ₹ 10,000)	
τR	Find My ~ communicate to nearby Apple devices Aintag ~ uses UWB for positioning
With UWB, people made DSRC. put them in cars	Aintag ~ uses UWB for positioning
UWB -> DSRC [Dedicated. Short Range Communications]	
DSRC enables vehicles to communicate with each other and	
DSRC enables vehicles to communicate with each other and other road users for direct wireless exchange of V2X& ITS. Australian company trying to install DSRC in vehicles and	
DSRC enables vehicles to communicate with each other and other road users for direct wireless exchange of V2X& ITS. Australian company trying to install DSRC in vehicles and	$P_{0} = \begin{bmatrix} P_{1} & \Box \\ \Box & P_{2} \end{bmatrix} \sim off-diagonal elements won't be zero anymore$
DSRC enables Vehicles to communicate with each other and other road users for direct wireless exchange of V2X & ITS. Australian company trying to install DSRC in vehicles and infrastructure.	
DSRC enables vehicles to communicate with each other and other road users for direct wireless exchange of V2X & ITS. Australian company trying to install DSRC in vehicles and infrastructure.	The more they talk to each other, the more they become correlated
DSRC enables Vehicles to communicate with each other and other road users for direct wireless exchange of V2X & ITS. Australian company trying to install DSRC in vehicles and infrastructure.	The more they talk to each other, the more they become correlated If you know these correlations then its good.
DSRC enables vehicles to communicate with each other and other road users for direct wireless exchange of V2X & ITS. Australian company trying to install DSRC in vehicles and infrastructure.	The more they talk to each other, the more they become correlated
DSRC enables vehicles to communicate with each other and other road, users for direct wireless exchange of $V2 \times \ell$ ITS. Australian company strying to install DSRC in vehicles and infrastructure.	The more they talk to each other, the more they become correlated If you know these correlations then its good.

 $z_{k} = h(x_{k}) + u_{k}$ $x_{k} = h(x_{k}) + u_{k}$ $y = \frac{1}{\sqrt{k}}$ $Assumption: transition of both cars
<math display="block">are independent of each other
(independent of each other
(independent model))
<math display="block">R_{k|k}$ Problem: can't have too big | complex
network, then the computations 1,
(aser ranger don't work after 100m
and a lot of limitations for a
large network.

Dictivity of comparative pacification	x_{2} x_{4} x_{4} $d = \begin{bmatrix} d_{12} \end{bmatrix}$
Distributed cooperative positioning	
$P = \begin{bmatrix} P_1 & 0 \end{bmatrix}$ initially assume uncorrelated	X ₂ d13
$P = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix}$ initially assume uncorrelated but as they interact, they	X3 d14
become correlated	X4 dis
Sn	×1 ×5 d23
$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	X2 X3 d
$\mathcal{U} = \sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}$	
In this problem correlation has become unknown and I	centralized vs Distributed
don't have any way of finding what is its correlation	-
This is unsolved problem till date, the reason being	More number of cars, better the connectivity and network
people don't know now to estimate it well. They use	Minimum sugairement depends on the configuration
some statistical technique or minimize correlation.	
-> open research problem	What happens when none of the cars have 4Ps?
\downarrow	
\bigcirc \bigcirc centralized	Relative positioning will be good but
better than	Absolute positioning won't be there.
distributed.	0
	So, you need few of them to have GPs installed on them.
better estimates	
centralized, approach distributed approach	
What you measure and share need not necessarily be	called Witi-Fingerprinting
distances. It can be anything that you can exchange.	stage 1: (Training phase)
	Prepare RSSI map correlating location with signal strength (RSSI)
UWB	
Ultra Wideband	stage 2: Positioning phase
	Match current signal strength to trained RSSI Map to estimate
	distances and thus, position.
transmit pulse radio to measure distance	
	Issues with WiFi
WiFi Routers WiFi Fingerprinting	
	1. Room Level Accuracy
RSSI	positioning accuracy of around a room, because the signal
+ [Receiver signal strength Indicator]	strength dont' vary much from one pt. to another within a room.
map signal strength across all locations	2. Map sensitive to room configuration
now from current signal strength I can	location vs strength map is not constant, it changes with
map where I am and find position	the configuration of room. Any rearrangement or changes
room-level within Mapped area.	in room layout affect RSSI mab requiring updates for
alturacy	accurate positioning.
Indoor Localization	

3. Indoor Positioning	2 Distance based methods
This works best for indoor environment not outdoor because outdoor environment changes much more rapidly	Use SS to estimate distance > mobile
	$35 \propto 1$
4. Symmetry (not unique)	$\downarrow a \rightarrow \qquad \qquad$
If there is a symmetrical building i.e. everything in it is	signal strength distance
symmetrical then you would not get unique signal	
strength everywhere	Path Loss Models; empirical models that relate SS to distance.
5. Router Location	$d = \sqrt{(x - x_i)^2 + (y - y_i)^2}$ and kn
Affected by location of routers in the room. If you add	
or more routers (turn on hotspot) then the map changes.	It works well for fixed setup environments like malls, factories
	industries, et where there is either no movement or movement
NITE WORKS Well ably where everythering is provide ordered	in a predefined manner i.e. there is no randomness.
WiFi works well only when everything is known precisely or if environment is stationary. It gives room revel accuracy.	
of it environment is stationary. It gives room cere alcuracy.	It also has wear, loved accuracy but with loss full trational
It means you can be anywhere in this room.	It also has room level accuracy but with less fultuations.

eg - City with cellular	towers	X = cellular towers
XXX	From every towe	r the signal you'll get
you	will be of difi	
		ngest signal received
	will be from	-
× T× ×		
	The cull areas o	re constructed by
, , , , , , , , , , , , , , , , , , , ,		y triangulation. The size
		bend on the density
	of the cell to	
No.	No of towers	1, size of the cells shrink
×	and the accus	t, size of the cells showing racy 1 now.
Pelaunay Triangulation	positional ac	wracy estimated based
		rength of nearest tower.
		0

SoOp (signals of Oppurtunity)

All those signals that were not originally intended for positioning Or navigation but can now be used for positioning / navigation.

eg: UWB, WiFi, Cullular (39149159), etc.

WIFI5 + New Hardware

With new standards and hardwares, I can calculate the time it takes for signal to travel from device to destination and come back, called Wi-Fi RTT (Round Trip Time).

Now trom m level accuracy -> deci-metre level accuracy positioning just because RTT being measured accurately.

2d = (WiFi RTT) X C

But the limitation is it is good for indoor only.

		ositioning system
	(((••)))	GPS
Car	WiFi	UWB ~ cars
Sensors	DR Cellular	WiFi
and robust position ~How do I combin	ne all of these inertia	a comprehensive al sensors along with ion everywhere all the time
~ Bigger research q	uestion ~ people trying	g to solve for the last
	till not resolved. \rightarrow	
\sim can I know n	m position everywr.	pere I go?
At the neart of a	U of this lies Kalm	an Filter and
its variants to s	olve the problems.	
Whatever covered, only in the position	just tip ~ so much :	more to talk about