# **EE656A**

## Artificial Intelligence, Machine Learning and Deep Learning

Dr. Nishchal Verma

## Aman

COUTSC Description

theoretical advancements in AI ML DL J Yeal life applications best suited for P4 students of all depts.

COUNSE pre-req: - EE 658 FUZZY sets, systems and applications (pref.)

course conduct: Al: history, intro Agents of Al FU 224 Systems (FS), ANN, EC, QA, SA, PSO, etc ML Clustering Bidustering Clustering Bidustering Curve fitting Permontance Measurement DL CN, etc. TA: mohd. Aquib (aquit @) Sectorom

## AI, ML & DL (Lecture #0 Introductory Class)

AI is branch of cs that aims to create intelligent machines capable of minicing human intelligence while performing tasks.

The suffmall goal of AT is to develop systems that can learn, reason and solve problems in a manner similar to humans.

striving for automation -> robots ->

can robot know do you need water? machine learns by experience AI can never scripass humans they say, it is man made. Witimate aim -> learn by experience (training, and then make decisions.

Al applications are widepread and impact our day to day life. Al now-a-days assist various industries, including healthcare, education and more.

· AT tunnology advances, the field of AI continues to evolve, raising etwical considerations and possibilities for groundbreaking innovations.

| Schedule: | Tues   | 12 to 13:15   | <u> 2 ΤΒ212</u>      |
|-----------|--------|---------------|----------------------|
|           | wed    | 12 to 13:15   |                      |
|           | lab-   | Tues 14 to    | 17                   |
|           |        | venue: NA - a | do on own system     |
|           | assigr | ments - subr  | nit around SPM.      |
|           |        | Ligetting ju  | nt before lab begim. |
|           |        | - 0 -         | 0 2                  |

#### Evaluation: class performance (Attendance/surp quiz/assignment) 10% 20.1. midsem course project (journal research term paper analysis, implements sim. results) 30:1. 40% endser groups tormed, (maybe) depards. individual also. after midsen BOORD: - ( dans discussions suff.) Al : modern approach (3rd ed.) 1. Russell, Norvig 2. Pattern Classification Richard O. Duda. some journals as will, sota, etc ...

coding background: python preferred.

## LECTURE #1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

### Intelligence

- · The cabacity to learn for problem solving, decision making, etc. • Faster Learning 🔶 Better Intelligence
- · Natural learning in living beings (humans, animals, etc) The grade of learning differs. It comes from experience I brain.

## Artificial Intelligence (Machine Intelligence

Artificially created capacity to make non-living beings! machines learn how to mimic the human intelligence.

## The major advantages of AI:

- 1. Machines do not require sleep or breaks, and are able to function without stopping with same efficiency,
- 2. Machines can continuously perform the same task without getting bored or tired.
- 3. Machines are needed to carry out dangerous tasks where the human health and safety are at risk.



- · An artificial neuron contains a non-linear activation function and has several incoming and outgoing weighted connections.
- 1942/43 Warren Mcalloch & Walter Pitts created a computational model for neural networks.

## Artificial Intelligence

· John McCarthy coined the word Artificial Intelligence (1955) · lisp functional language is the first practical and still widely used AI programming language developed by John McCarthy in late 1950s. (Lisp and Prolog) ~ AI Alan Turing's Machine in 1937 (Universal Computing Machine)



Philosophically Al was described way back many centuries ago. But in engineering sense this computing machine was and mark.

| AI in History    |                                                            |
|------------------|------------------------------------------------------------|
|                  |                                                            |
| 19 <i>3</i> 6-37 | Allen's Universal Turing machine was proposed              |
| 1942/43          | Warren Mcculloch & Warren Pitts created a computational    |
|                  | modul for neural networks called threshold logic.          |
|                  |                                                            |
| 1950             | Turing test was proposed                                   |
|                  |                                                            |
| 1955             | John McCarthy has coined the term. Artificial Intelligence |
|                  |                                                            |
| 1957             | Perceptron model was introduced                            |
|                  |                                                            |
| 19605            | Genetic Algorithm                                          |
|                  | * ~ coined by Prof. Rina. Dechter                          |
| 1965             | Fuzzy Logic   Dech Learning                                |
| 1000             | Confutteran Content                                        |
| 19705            | Evourtonary computing                                      |
| 1004.            | Naukal computing congress installingunge                   |
| 19005            | Nacroe Comparing, Swarm Michagen a                         |
|                  |                                                            |

| 1990s Hybrid models; Neuro Fuzzy Systems; Neuro Fuzzy Genetic, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Disulesion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Beyond 1990s Research Areas [Domains (statistical learning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · Experience -> Data -> brain is trained with data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Adaptive systems (AS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • Now with that data even with new sunarios you can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Evolutionary computing (EC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | make right deusions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Data Mining (DM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • Intelligence comes from learning learning comes from experience.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Simulated Annealing (SA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · Our goal is to go one step ahead ~7 looking at the past data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · Particle Swarm Optimization (PSO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rooots are getting trained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| · Veep Neural Networks (DNN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • SIRI, Alexa ~7 they are also taking data and learning by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dieb fuzzy Networks (DFN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | past adda. Remind you when you don't do usual tasks, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | How to train and make any machine learn something <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unrespondence ine mapping input indings with outcomes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Now you trustica people and trade triands?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | If it is in anotable roman than we and to an and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | auth, time, dayalon touch in people                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WINC CHIER CORRECTOR DUSC DO PEOPle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Input> Autbut Mare input loutbut (quants)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Stimulus) (Response) better delision making                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ARLESPON DEN/E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| manmade you knows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| manmade you know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | computational Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Manmade you knows<br>Arbificial Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | computational Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Artificial Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | computational Intelligence<br>· CI is a set of nature - inspired computational methodologies and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| manmade you knows<br>Arbificial Intelligence<br>• We create a abstract madel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | computational intelligence<br>· CI is a set of nature - inspired computational methodologies and<br>approaches to address complex real-world problems to which mathematical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| manmade you know<br>Arbificial Intelligence<br>· We create a abstract madel.<br>· Develop this model in machine learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | computational Intelligence<br>· CI is a set of nature - inspired combutational methodologies and<br>approaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the process es                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| manmade you know<br>Arbificial Intelligence<br>• We create a abstract model.<br>• Develop this model in machine learning.<br>• Basis of model can be anything (neural network,<br>fizzy network at )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | computational Intelligence<br>· CI is a set of nature - inspired combutational methodologies and<br>abproaches to address complex real-world problems to while mathematical<br>or traditional modelling can be useless for a few reasons: the processes<br>might be too complex for mathematical reasoning, it might contain some                                                                                                                                                                                                                                                                                                                                                                                           |
| Manmade you know<br>Artificial Intelligence<br>· We create a abstract model.<br>· Develop this model in machine learning.<br>· Basis of model can be anything (neural network,<br>fuzzy network, etc).<br>It can be anything that is learnable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Computational Intelligence<br>· CI is a set of nature - inspired computational methodologies and<br>approaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the processes<br>might be too complex for mathematical reasoning, it might contain some<br>uncertainties during the process, or process simply be stochastic in<br>with                                                                                                                                                                                                                                                                                                           |
| Manmade you knows<br>Artificial Intelligence<br>· We create a abstract model.<br>· Develop this model in machine learning.<br>· Basis of model can be anything (neural network,<br>fuzzy network, etc)<br>> It can be anything that is learnable.<br>· This intelligence developed is limited and data limited inb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | computational Intelligence<br>· CI is a set of nature - inspired computational methodologies and<br>approaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the processes<br>might be too complex for mathematical reasoning, it might contain some<br>uncertainties during the process or process simply be stochastic in<br>nature.                                                                                                                                                                                                                                                                                                         |
| Manmade You Knows<br>Artificial Intelligence<br>· We create a abstract model.<br>· Develop this model in machine learning.<br>· Basis of model can be anything (neural network,<br>fuzzy network, etc)<br>· It can be anything that is learnable.<br>· This intelligence developed is limited and does limited job.<br>· (ast Based system is not intelligence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | computational Intelligence<br>· CI is a set of nature -inspired computational methodologies and<br>approaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the process es<br>might be too complex for mathematical reasoning, it might contain some<br>uncertainties during the process, or process simply be stochastic in<br>mathematical                                                                                                                                                                                                                                                                                                   |
| Manmade You Knows<br>Arbificial Intelligence<br>· We create a abstract model.<br>· Develop this model in machine learning.<br>· Basis of model can be anything (neural network,<br>fuzzy network, etc)<br>· It can be anything that is learnable.<br>· This intelligence developed is limited and does limited job.<br>· Case Based system is not intelligence.<br>· Non-mathe based in intelligence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | computational Intelligence<br>· CI is a set of nature - inspired computational methodologies and<br>approaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the process es<br>might be too complex for mathematical reasoning, it might contain some<br>uncertainties during the process, or process simply be stochastic in<br>mature.<br>· Major constituents of CI are fuzzy systems, neural networks, evolutionary<br>alonitare and hypoid, intilliance systems.                                                                                                                                                                          |
| Manmade You Knows<br>Artificial Intelligence<br>· We create a abstract madel.<br>· Develop this modul in machine learning.<br>· Basis of modul can be anything (neural network,<br>fuzzy network, etc)<br>· It can be anything that is learnable.<br>· This intelligence developed is limited and does limited job.<br>· Case Based system is not intelligence.<br>· Non-match based is intelligence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Computational Intelligence<br>CI is a set of nature -inspired combutational methodologies and<br>abproaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the process es<br>might be too complex for mathematical reasoning , it might contain some<br>uncertainties during the process, or process simply be stochastic in<br>mathematical.<br>Major constituents of CI are fuzzy systems, neural networks, evolutionary<br>algorithms and hybrid intelligence systems.<br>AI                                                                                                                                                                 |
| Manmade you Knows<br>Artificial Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Computational Intelligence<br>CI is a set of nature -inspired computational methodologies and<br>approaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the processes<br>might be too complex for mathematical reasoning, it might contain some<br>uncertainties during the process, or process simply be stockastic in<br>nature.<br>Major constituents of CI are fuzzy systems, neural networks, evolutionary<br>algorithms and hybrid intelligence systems.<br>AI (ontaine CI (CICAI)                                                                                                                                                     |
| Manmade you know<br>Artificial Intelligence<br>· We create a abstract madel.<br>· Develop this model in machine learning.<br>· Basis of model can be anything (neural network,<br>fuzzy network, etc)<br>· It can be anything that is learnable.<br>· This intelligence developed is limited and does limited job.<br>· case Based system is not intelligence.<br>· Non-match based is intelligence.<br>· Reflexes*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Computational Intelligence</li> <li>CI is a set of nature -inspired computational methodologies and approaches to address complex real-world problems to which mathematical or tradictional modelling can be useless for a few reasons: the process as might be too complex for mathematical reasoning, it might contain some uncertainties during the process, or process simply be stochastic in nature.</li> <li>Major constituents of CI are fuzzy systems, neural networks, evolutionary algorithms and hybrid intelligence systems.</li> <li>AI contains CI (CI ⊆ AI)</li> </ul>                                                                                                                             |
| Manmade you knows<br>Artificial Intelligence<br>· We create a abstract madel.<br>· Develop this modul in machine learning.<br>· Basis of modul can be anything (neural network,<br>fuzzy network, etc)<br>· It can be anything that is learnable.<br>· This intelligence developed is limited and dows limited job.<br>· Case Based system is not intelligence.<br>· Non-match based is intelligence.<br>· Kettexes*<br>Supervised learning you have correspondence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} computational  Intelligence \\ \hline CI is a set of nature -inspired computational methodologies and approaches to address complex real-world problems to which mathematical or traditional modelling can be useless for a few reasons: He process es might be too complex for mathematical reasoning, it might contain some uncertainties during the process, or process simply be stochastic is nature. \\ \hline Major constituents of CI are fuzzy systems, neural networks, evolutionary algorithms and hybrid intelligence systems. \\ \hline AI contains CI (CI \subseteq AI) \\ \hline Deeb learning \sim Use only when needed. \\ \hline \end{array}$                                           |
| Artificial Intelligence<br>Artificial Intelligence<br>· We create a abstract madel.<br>· Develop this model in machine learning.<br>· Basis of model can be anything (neural network,<br>fuzzy network, etc)<br>· It can be anything that is learnable.<br>· This intelligence developed is limited and does limited job.<br>· Case Basis system is not intelligence.<br>· Non-match based is intelligence.<br>· Non-match based is intelligence.<br>· Mon-match based is intelligence.<br>· Mon-match based is intelligence.<br>· Non-match based is intelligence.<br>· Non-match based is intelligence.<br>· Non-match based is intelligence.<br>· No outcomes known                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Computational Intelligence</li> <li>CI is a set of nature -inspired computational methodologies and approaches to address complex real-world problems to which mathematical or traditional modelling can be useless for a few reasons: the process es might be too complex for mathematical reasoning, it might contain some uncertainties during the process, or process simply be stochastic in nature.</li> <li>Major constituents of CI are fuzzy systems, neural networks, evolutionary algorithms and hybrid intelligence systems.</li> <li>AI contains CI (CI          (CI          (CI          (AI))     </li> <li>Deeb learning ~ Use only when needed otherwise it will give adverse effect.</li> </ul> |
| Manmade you knows<br>Artificial Intelligence<br>We create a abstract madel.<br>Develop this modul in machine learning.<br>Basis of modul can be anything (neural network,<br>fuzzy network, etc)<br>>It can be anything that is learnable.<br>This intelligence developed is limited and does limited job.<br>Case Based system is not intelligence.<br>Non-match based is intelligence.<br>Supervised learning you have correspondence<br>unsubervised learning you don't have correspondence.<br>No outcomes known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Computational Intelligence</li> <li>CI is a set of nature -inspired computational methodologies and approaches to address complex real-world problems to while mathematical or traditional modelling can be useless for a few reasons: He process to might be too complex for mathematical reasoning, it might contain some uncertainties during the process or process simply be stocknastic in nature.</li> <li>Major constituents of CI are fazzy systems, neural networks, evolutionary algorithms and hybrid intelligence systems.</li> <li>AI contains CI (CI          (CI          (CI          (CI          (CI          (AI)))</li> </ul>                                                                 |
| Mammade you know<br>Artificial Intelligence<br>· We create a abstract madel.<br>· Develop this modul in machine learning.<br>· Basis of modul can be anything (neural network,<br>fuzzy network, etc)<br>· This intelligence developed is limited and does limited job.<br>· Case Based system is not intelligence.<br>· Non-match based is intelligence.<br>· Mon-match learning you have correspondence.<br>· No outcomes known<br>semi-supervised learning partially correspondence.                                                                                                                                                                                                                                                                                                                                   | computational Intelligence         • CI is a set of nature -inspired computational methodologies and<br>abproaches to address complex real-world problems to which mathematical<br>or traditional modelling can be useless for a few reasons: the process es<br>might be too compute for mathematical reasoning , it might contain some<br>uncertainties during the process, or process simply be stochastic in<br>nature.         • Major constituents of CI are fazzy systems, neural networks, evolutionary<br>algorithms and hybrid intelligence systems.         • AI contains CI (CI ⊆ AI)         • Deeb learning ~ use only when needed.<br>otherwise it wild give adverse effect.         • Rule based systems     |
| manmade you know<br>Artificial Intelligence<br>· We create a abstract madel.<br>· Develop this model in machine learning.<br>· Dassis of model can be anything (neural network,<br>filzzy network, etc.)<br>· This intelligence developed is limited and does limited job.<br>· Case Based system is not intelligence.<br>· Non-match based is intelligence.<br>· Non-match based is intelligence.<br>· Mon-match based is intelligence.<br>· Mon-match based is intelligence.<br>· Mon-match based is intelligence.<br>· Non-match based is intelligence.<br>· Non-match based is intelligence.<br>· Mon-match based is intelligence.<br>· Mo outcomes known<br>semi-supervised learning partially correspondence.<br>· Some outcomes known, | computational Intelligence         • CI is a set of nature -inspired computational methodologies and approaches to address complex real-world problems to which mathematical or traditional modelling can be useless for a few reasons: the processes might be too complex for mathematical reasoning, it might contain some uncertainties during the process or process simply be stochastic in nature.         • Major constituents of CI are fazzy systems, neural networks, evolutionary algorithms and hybrid intelligence systems.         • AI contains CI (CI ≤ AI)         • Neeb learning ~Use only when needed. otherwise it will give adverse effect.         • Rule based systems input → □ → outpat           |
| Artificial Intelligence<br>We create a abstract madel.<br>Develop this modul in machine learning.<br>Basis of modul can be anything (neural network,<br>fluzzy network, etc)<br>It can be anything that is learnable.<br>This intelligence developed is limited and does limited job.<br>Case Based system is not intelligence.<br>Non-match based is intelligence.<br>Mon-match based is intelligence.<br>Mon-match based is intelligence.<br>Mon-match based is intelligence.<br>Mo outcomes known<br>semi-supervised learning partially corresbondence.<br>Some outcomes known,<br>some not known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Computational Intelligence         • CI is a set of nature -inspired computational methodologies and approaches to address complex real-world problems to which mathematical or traditional modelling can be useless for a few reasons: the processes might be too complex for mathematical reasoning, it might contain, some uncertainties during the process, or process simply be stochastic is nature.         • Major constituents of CI are fazzy systems, neural networks, evolutionary algorithms and hybrid intelligence systems.         • AI contrains CI (CI ⊆ AI)         • beeb learning ~ use only when needed otherwise it will give adverse effect.         • Rule based systems input → □ → output        |



· John McCarthy coined the word Artificial Intelligence (1955)

Some Applications of AI

Condition Based Maintenance and remaining useful lite prediction of Machines Like military ground vehicles
CV: Object Recognition, Identification, Counting, Tracking and Survelliance
Future Image Generation
Systems Model Development for Prediction or forecasting
Network Enabled Manufacturing
Border Patrolling,
Bomb Disposel,
Rescue Operations
Cyber Security
Natural Language Processing (NLP)
Speech Processing,
Supply chain management
Medics: maintaining destronic medical records for identification of critical health problems

## LECTURE # 2 AGENTS OF ARTIFICIAL INTELLIGENCE / INTELLIGENT AGENTS

Artificial Intelligent Agents 1. Simple Reflex agents 2. Model-based Reflex agents Russell Book on AI (3rded.) Ch 2 Intelligent Agents

- 3. Goal-based agents
- 4. Utility based agents
- 5. Learning agents



· Sensors - convert physical phenomenon into usable electrical signals.

· Transducers — convert one physical phenomenon into another lotten electrical signal)

· Actuators — opposite — convert electrical signal into physical phenomenon.

Agent

An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators. A human agent has eyes, ears, and other organs for sensors and

- hands, legs, yocal tract, and so on for actuators.
- A robot agent might have cameras, infrared range, temperature, etc for sensors and various motors for actuators.
- A Software agent receives Reystrokes, file contents, and network packets as sensory inputs and acts on the environment by displaying on the screen, writing files, and sending network packets.



| sensors   | percepts |               |                        |
|-----------|----------|---------------|------------------------|
|           |          |               | Anhitecture — hardware |
|           |          |               | (sensor+               |
| Agent 7   |          | Environment   | actuator)              |
| An ~ ·    |          |               | Agent Program - f:P->A |
|           |          |               |                        |
| actuators |          |               |                        |
|           | actions  | $\rightarrow$ |                        |

Agent = Architecture + Agent Program

- · Architecture is the machinery that the agent executes on. It is a device with sensors and actuators. for eg: a robotic car, camera, PC.
- · Agent Program is the implementation of an agent function.
- An Agent function is a map from the percept sequence (history of all that an agent has perceived till date) to an action.

 $f: P \longrightarrow A$ percepts

- "We use the term percept (P) to refer to the agent's perceptual inputs at any given instant.
- An agent's percept sequence is the complete history of everything the agent has ever proposed.
- 'In general, an agent's choice of action (A) at any given instant can depend on the entire percept sequence observed to date, but not on anything it nasn't perceived.
- · Mathematically speaking, we say that an agent's behaviour is described by the agent function (f) that maps any given percept sequence to an action.

 $f: P \longrightarrow A$ percepts  $\mathcal{I} \xrightarrow{} action$ 

## Rational Agent

A rational agent is one that does the right thing it conceptually speaking every job has been carried out correctly. Obviously, doing the night thing is better than doing the wrong thing, but what does it mean to do the night thing?

- · Rationality at any given time depends on four things :-
  - 1. The performance measure that defines the criterian of success
  - 2. The agent's prior knowledge of the environment.
  - 3. The actions that the agent can perform
  - 4. The agent's percept sequence to date.

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent hap.

action

Agents & their performance measures, Environment, Actuators & Sensors

| Agent                           | Performance Measure                                            | Environment                            | Actuators                                                        | Sensors                                                                                   |  |
|---------------------------------|----------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
|                                 |                                                                |                                        |                                                                  |                                                                                           |  |
| Taxi driver                     | Safe, fast, legal, comfortable trip, traffic, maximize profits | Roads, other pedestrians,<br>customers | Steering, accelerator, brake,<br>signal, horn, display           | Cameras, sonar, speedometer,<br>GPS, odometer, accelerometer,<br>engine sensors, keyboard |  |
| Medical diagnosis system        | Healthy patient, reduced costs                                 | Patient, hospital, staff               | Display of questions, tests,<br>diagnoses, treatments, referrals | Keyboard entry of symptoms, findings, patient's answers                                   |  |
| Satellite image analysis system | Correct image categorization                                   | Downlink from orbiting satellite       | Display of scene categorization                                  | Color pixel arrays                                                                        |  |
| Part-picking robot              | Percentage of parts in correct<br>bins                         | Conveyor belt with parts; bins         | Jointed arm and hand                                             | Camera, joint angle sensors                                                               |  |
| Refinery controller             | Purity, yield, safety                                          | Refinery, operators                    | Valves, pumps, heaters,<br>displays                              | Temperature, pressure, chemical sensors                                                   |  |
| English tutor (Interactive)     | Student's score on test                                        | Set of students, testing agency        | Display of exercises,<br>suggestions, corrections                | Keyboard entry                                                                            |  |

"The job of AI is to design an agent program that implements the agent function i.e. the mapping from purcepts (P) to actions (A).

We assume this program will run on some sort of computing device with physical sensors and actuators — we call this the architecture.

agent = Architecture + program V V hardware software

## Full observable vs Partially Observable Agents

- "If an agent's sensors give it access to the complete state of the environment at each point in time then we say that the task environment is fully observable.
- A task environment is effectively fully observable if the sensors detect all the aspects that are relevant to the choice of action, relevance in turn depends on the performance measure.
- · Fully observable environments are convenient because the agent need not maintain any internal state to keep track of the world.
- An environment might be partially observable because of noisy and inaccurate sensors or because parts of the state are simply missing from the sensor data - for eg a racuum agent with only a local dirt sensor can't tell whither there is dirt in other squares, and <u>an automated taxi</u> can't see what other drivers are thinking.
- . If the agent has no sensors at all then environment is unobservable.
- One might think that in such cases the agent's plight is hopeless, but as we discuss the agent's goal may still be achievable, sometimes with certainty.

There are four basic Rinds of agent programs that embody the principles underlying almost all Artificial Intelligent systems:-

- 1. Simple Reflex agents
- 2. Model-based Reflex agents
- 3. Goal-based agents
- 4. Utility based agents

·Each kind of the above program combines particular components in particular ways to generate actions.

• In general terms all these agents can be converted into Learning Agents that can improve the performance of their components so as to generate better actions.

## LECTURE #3 AGENTS OF ARTIFICIAL INTELLIGENCE / INTELLIGENT AGENTS

### Simple Reflex Agent



We call such a connection a condition-action rule, written as: if car-in-front-is-braking then initiate-braking. (Also called situation-action rules, productions, or if-then rules)

Simple reflex agents have the admirable property of being simple, but they turn out to be of limited intelligence.

The Simple reflex agent will work only if the correct decision can be made on the basis of only the current percept – that is, only if the environment is fully observable. Even a little bit of unobservability can cause serious trouble.

For example, the braking rule given earlier assumes that the condition car-infront-is-braking can be determined from the current percept – a single frame of video.

A simple reflex agent driving behind such a car would either brake continuously and unnecessarily, or, worse, never brake at all. The advantages of Simple reflex agents are : 1.Very easy to implement 2.Computational complexity is minimal

Problems with Simple reflex agents are : 1.Very limited intelligence. 2.No knowledge of non-perceptual parts of the state.

3. Usually too big to generate and store.

4. If there occurs any change in the environment, then the collection of rules need to be updated.

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis of the current percept, ignoring the rest of the percept history.

Simple reflex behaviors can be understood as follows: Imagine yourself as the driver of the automated taxi. If the car in front brakes and its brake lights come on, then you should notice this and initiate braking.

In other words, some processing is done on the visual input to establish the condition we call "The car in front is braking." Then, this triggers some established connection in the agent program to the action "initiate braking."

### Model-based Reflex Agent



The most effective way to handle partial observability is for the agent to keep track of the part of the world it can't see now. That is, the agent should maintain some sort of internal state that depends on the percept history and thereby reflects at least some of the unobserved aspects of the current state.

For other driving tasks such as changing lanes, the agent needs to keep track of where the other cars are if it can't see them all at once. And for any driving to be possible at all, the agent needs to keep track of where the cars are.

First, we need some information about how the world evolves independently of the agent. For example, an overtaking car generally will be closer behind than it was a moment ago.

Second, we need some information about how the agent's own actions affect the world. For example, when the agent turns the steering wheel clockwise, the car turns to the right, or after driving for five minutes northbound on the freeway, one is usually about five miles north of where one was five minutes ago.

This knowledge about "how the world works"—whether implemented in simple Boolean logic or some other logic/scientific theories—is called a model of the world.

An agent that uses such a model is called a model-based agent.

Knowing something about the current state of the environment is not always enough to decide what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight on. The correct decision depends on where the taxi is trying to get to.

In other words, as well as a current state description, the agent needs some sort of goal information that describes desirable situations. For example, being at the passenger's destination.

The agent program can combine this goal information with the model (the same information as was used in the model-based reflex agent) to choose actions that achieve the goal.





Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the achievement of its goals.

#### Utility-based Agent



right 2114 minute bits and a start of the world, along with a utility function that measures its preferences among states of the world. Then it chooses the action that leads to the best expected utility, where expected utility is computed by averaging over all possible outcome states, weighted by the probability of the outcome.

Learning Agent



1. Performance Element

2. Critic Element

- 3. Learning Element
- 4. Problem Generator



In many areas of AI, learning has become the preferred method for creating state-of-the-art systems.

Learning has another advantage, as we noted earlier: it allows the agent to operate in initially unknown environments and to become more competent than its initial knowledge alone might allow. The word "utility" here refers to "the quality of being useful," not to the electric company or waterworks. Sometimes, goals alone are not enough to generate highquality behavior in most environments. For example, many action sequences will get the taxi to its destination (thereby achieving the goal), but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a crude binary distinction between "happy" and "unhappy" states. A more general performance measure should allow a comparison of different world states according to exactly how happy they would make the agent. Because "happy" does not sound very scientific, economists and computer scientists use the term utility instead.

Like goal-based agents, a utility-based agent has many advantages in terms of flexibility and learning. Furthermore, goals are inadequate, but a utility-based agent can still make rational decisions.

First, when there are conflicting goals, only some of which can be achieved (for example, speed and safety), the utility function specifies the appropriate tradeoff.

Second, when there are several goals that the agent can aim for, none of which can be achieved with certainty, utility provides a way in which the likelihood of success can be weighed against the importance of the goals.

The key components of this system are the learning element, responsible for making improvements, and the performance element, responsible for selecting external actions.

The learning element utilizesss feedback from the critic on how the agent is performing and determines how the performance element should be modified to achieve better outcomes in the future.

The design of the learning element is heavily influenced by the design of the performance element. When attempting to design an agent that learns a specific capability, the initial question is not "How will I get it to learn this?" but rather "What kind of performance element will my agent require to execute this once it has learned how?"

With an agent design in mind, learning mechanisms can be developed to enhance each aspect of the agent.

The critic informs the learning element about the agent's performance relative to a predetermined performance standard. The critic's role is essential because the percepts alone do not offer any indication of the agent's success. The problem generator serves as the final component of the learning agent. Its role is to propose actions that will result in novel and informative experiences.

The major points to recall are as follows:

1) An agent is something that perceives and acts in an environment. The agent function for an agent specifies the action taken by the agent in response to any percept sequence.

2) The performance measure evaluates the behavior of the agent in an environment. They can be fully or partially observable, single-agent or multiagentformance measure, given the percept sequence it has seen so far.

3) A task environment specification includes the performance measure, the external environment, the actuators, and the sensors. In designing an agent, the first step must always be to specify the task environment as fully as possible. Task environments vary along several significant dimensions. They can be fully or partially observable, single-agent or multiagent, deterministic or stochastic, episodic or sequential, static or dynamic, discrete or continuous, and known or unknown.

Why would we want an agent to learn?

There are three main reasons:

1) First the AI designers cannot anticipate all possible situations that the agent might find itself in.

For example, a robot designed to navigate mazes (networks of paths and hedges designed as a puzzle through which one has to find a way) must learn the layout of each new maze it encounters.

2) Second, the Al Agent designers cannot anticipate all changes over time; a program designed to predict tomorrow's stock market prices must learn to adapt when conditions change from boom to bust.

3. Third, sometimes human programmers have no idea how to program a solution themselves.

For example, most people are good at recognizing the faces of family members, but even the best programmers are unable to program a computer to accomplish that task, except by using learning algorithms. 4)The agent program implements the agent function. Various basic agentprogram designs exist, reflecting the type of information made explicit and utilized in the decision process. These designs vary in efficiency, compactness, and flexibility. The appropriate design of the agent program depends on the nature of the environment.

5)Simple reflex agents respond directly to percepts, while model-based reflex agents maintain internal state to track aspects of the world not evident in the current percept. Goal-based agents act to achieve their goals, and utility-based agents aim to maximize their own expected "happiness."

6)All agents have the capacity to enhance their performance through learning.

An agent is a learning agent if it improves it's performance on future tasks after making observations about the world.

Any component of an Al agent can be improved by learning from data. The improvements, and the techniques used to make them, depend on four major factors:

1. Which component is to be improved.

- 2. What prior knowledge the agent already has.
- 3. What representation is used for the data and the component.
- 4. What feedback is available to learn from

## LECTURE # 627 UNSUPERVISED LEARNING : K-MEANS CLUSTERING

## K-Means Mustering

- · The term K-means was first used by James Macqueen in 1967, though the idea goes back to Hugo Steinhaus in 1956.
- . The standard algorithm was first proposed by stuart Lloyd of Bell Labs in 1957 as a teenique for pulse code modulation, though it wasn't published as a journal article until 1982. 'In 1965, Edward W Forgy published essentially the same method, which is why it is sometimes referred to as Lloyd-Forgy.
- · K-means is one of the most popular "dustering" algorithms. · K-means has K-centroids that it uses to define the number of cursters.
- · A point is considered to be in a particular cluster if it is closer to that duster's centroid than any other centroid.
- ·K-Means find the best centroids by alternating between
- (1) assigning data points to dusters based on unrent centroids
- (2) compute centroids (points which are the centre of a cluster) based on the current assignment of data points to clusters.

where CK = Kth cluster centre found by taking the average or mean of all the points assigned to CK.

STEP-3: Find new K-centroids (ie the K number of means based on the data points assigned to respective clusters) as the ellester centres of the current partitions.

 $\mathcal{L}_{nusi} = \frac{1}{n} \sum_{x_{j \in Si}} \mathcal{X}_{j} + a_{verage} \text{ of members of Unster}$ 

STEP-4: Go back to step-2, stop when centroids or cluster centres do not change or until convergence.

· In other words, the goal is to attain the smallest objective function. · Does this depend on the initial seed value? YES!

- · K-Means may not always converge at global minimum (optimal sol<sup>n</sup> with lowest WCSS)
- K-Means converges to local minima and not neccesarily at the global minima (global optimum).
- · convergence depends on initial seed values.

## K-Means Clustering : The Algorithm

Given the cluster number "k" for any data points as data set, the algorithm is carried out in four steps after initialisation:

STEP-1: Choose any K-centroids or cluster centres randomly.

STEP-2: Assign each data point to the nearest centroid or cluster centre. Use Euclidean or L2 norm or square of Euclidean as distance metric

Given a set of data points {x1, x2, ... xn} in a dataset, where each pt. is a d-dimensional real vector, K-Means clustering aims to partition the n data points into K (<n) Musture C = {C1, C2, ..., CK} so as to minimize the within-cluster sum of squares (WCSS) or Euclidean distance. Formally the objective function is to find  $\sum_{k=1}^{\kappa} \sum_{i=1}^{n} || \chi_i - \mathcal{C}_{\kappa} ||^2$ 

Objective Function = C

## Example 1 (K-Means) Problem: 4 types of medicines — each has two attributes (pM & weight index) goal - group into 2 dusters (x=2) Medicine Weight; phi рH A 2 В 3 5 $\mathcal{D}$ Distance metrix Weight $\sqrt{\epsilon} |\chi_i|^2 - u_{sc}$ His V G Euclidean Distance Manhattan Distance Elzil & can use any. Ip norm in general



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G = (1, 1)                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C_{2} = (3.67, 2.67)$                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
| рн С2 🚓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Renew membership based on                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | new centroids                                             |
| A B 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · compute distance of all objects                         |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to the new centroids                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $D' = 0$ ( 3.01 5 $C_1$                                   |
| Weight -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/14 x 36 0.47 1.89 22                                    |
| dia - cause V i - (122)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |
| $\frac{1}{12} = \frac{1}{12} \frac{1}{12}$ | where $C_1 = (11)$ is unchanged                           |
| $dp_2 = \sqrt{(3.67 - 1)^2 + (2.67 - 1)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3.74<br>- 2.26                                          |
| $d = \sqrt{(307-2)^2 + (207-7)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 2.50<br>= 1.47                                          |
| $d_{N2} = \sqrt{(3.67 - 6)^2 + (2.67 - 4)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1·89                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
| $A \longrightarrow min(0, z; k) = 0 \longrightarrow c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $( \rightarrow min / 3.61, 0.47) = 0.47 \rightarrow C2 )$ |
| $B \rightarrow \min(1,2,34) = 1 \rightarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $( D \to Min (5, 1.88) = 1.88 \to C2 $                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |

| $A \longrightarrow min$ | (0,1) = 0           | لر رے | Assian each, | object     |
|-------------------------|---------------------|-------|--------------|------------|
| B-> min                 | (1,0) = 0           | 627   | to a cluster | with       |
| c → min                 | (3.61, 2.83) = 2.83 | C2 >  | the nearest  | seed point |
| D-> min                 | (5, 4.24) = 4.24    | c2 J  |              | · · ·      |
|                         |                     |       |              |            |

Compute new centroids of the current partition we know members of each cluster, we can find new centroid of each group by taking average of member values.



| New centroids $C_1 = \left(\frac{1+1}{2}\right)$<br>$C_2 = \left(\frac{4}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{2}{2}, \frac{l+l}{2} = (1.5, 1)$ $\frac{+5}{2}, \frac{3+4}{2} = (4.5, 3.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuo Distances $D_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{bmatrix} 0.5 & 0.5 & 3.2 & 4.61 \\ 4.3 & 3.54 & 0.71 & 0.71 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_2 \\ c_2 \end{bmatrix} \begin{bmatrix} c_2 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_2 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_2 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_2 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_2 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_$ |
| $\begin{array}{c} 4 \\ z \\ pH \\ z \\ 1 \\ \hline 2 \\ 2 \\ \hline 2 \\ 4 \\ 4 \\ \hline 2 \\ 4 \\ 4 \\ \hline 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$ | <ul> <li>Stop due to no new assignment</li> <li>member ship in each duoter</li> <li>no Longer change.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





 $f: \mathbb{R}^n \to \mathbb{R}$  is norm if  $---- f(n) \ge 0$  and  $\mathcal{R}^n$ non negative definite  $--- f(tx) = iti f(x) \forall x \in \mathbb{R}^n, t \in \mathbb{R}$ homogenous  $- f(n+4) \leq f(n) + f(4)$ triangular inequality 1|x1] - general 1121) ump - specific norm Norms facilitates length and distance measurements. · 11×11, : Euclidean norm (l2 norm •  $||\mathcal{X}||_{1} = |\mathcal{X}_{1}| + |\mathcal{X}_{2}| + \dots + |\mathcal{X}_{n}|$  ( $l_{1}$  nor Manhattan distance) •  $||\chi||_{p} = \left[ |\chi_{1}|^{p} + |\chi_{2}|^{p} + \dots + |\chi_{m}|^{p} \right]^{1/p} \left( lp norm \right)$ •  $||\chi||_{\infty} = \max\{|\chi_1|, |\chi_2|, \dots, |\chi_n|\}$  (loo norm)

Norms

| _ |                                                                 |
|---|-----------------------------------------------------------------|
|   | K-Means Uustering                                               |
|   | Č.                                                              |
|   | Strength , computational complexity                             |
|   | ·Relatively efficient: 0/ i.K.n.d) Big-O-Notation               |
| ι | n = no. of objects or data points                               |
|   | K = no. of clusters                                             |
|   | d = no. of features                                             |
|   | i = no. of iterations                                           |
| ) | Normally, $K, i \leq n$                                         |
|   | Often terminates at a local optimum.                            |
|   | The global optimum may be found using tuniques such as;         |
|   | deterministic annealing and genetic algorithms                  |
|   |                                                                 |
|   | weakness                                                        |
|   | · Need to specify K=no. of clusters in advance.                 |
|   | · sensitive to initial seed points lie random cluster centers). |
|   | · Unable to handle noisy data and outliers.                     |
|   | · Not suitable to discover clusters with non-convex shapes.     |
|   | distance                                                        |
|   | metric                                                          |
|   | spherical shape                                                 |
|   |                                                                 |

rooter of size nxn RGB IMAGE



Step 5: Create Imagie that segment H&E Image by color Apply label and color into of each pixel to seperate color imagie corresponding to three clusters.



Some Relevant Data Clustering works that you may try:

[1] Nishchal K. Verma and M. Hanmandlu, Color segmentation via. Improved Mountain Clustering Technique, International Journal of Image and Graphics, vol.7, no. 2, pp. 407-426, Apr. 2007.

[2] Nishchal K. Verma and A. Roy, Self-Optimal Clustering Technique Using Optimized Threshold Function, IEEE Systems Journal, vol. 99, pp. 1-14, Jul. 2013. L, 50C -> Search google -> find & implement using codes on site. ~ Not for exam! Applications of K-Means Colour - Based Image Segmentation using E-Means

Step 1 : Load colour image of tissue stained with nomotoxic & eosin (H&E) — Finding black down't mean exact black - similar - sugment Step 2: convert R4B color space -> L\* a\* b\* color space . L\* a\* b\* =

· L\*a\* b\* is designed to approximate human vision unlike RUB. Complicated transformation blue RUB & L#a\*b\*

 $(L^*, a^*, b^*) = T(R, G, B)$   $(R, G, B) = T'(L^*, a^*, b^*)$ 

Step3: K-Means clustering with K=3.

Step 4: Label every pixel in image using x-means clustering result

(three diff. grey levels)



Aim: to segment the image based on colors. Segment to roughly | abbrox best match colors and not exactly.

## Summary (K-Means)

- ·K-Means algorithm is simple yet popular method for clustering analysis.
- · It performance is determined by initialisation and appropriate distance measure.
- There are several variants of K-Means to overcome its weaknesses — K-Medrods: resistance to noise and outliers
- K-Modes: extension to categorical aata clustering analysis
- CLARA : extension to deal with large datasets
- Mixture module (EM algorithm): nandling uncertainty of culsters

## LECTURE #8 FUZZY C-MEANS CLUSTERING

### FUZZY C-Means (FCM)

- FUZZY C-Means (FCM) clustering is an extension of the K-Means dwotering dweloped by J.C. Dunn in 1973 and improved by J.C. Bezdek in 1981.
- FCM clustering allows data points to be assigned into more than one cluster.
- This algorithm works by assigning membership to each data point corresponding to each cluster on the basis of distance blue the cluster centre and data point. Data near to the cluster center more is its membership for the particular cluster center. Clearly summation of membership of each data point should be equal to 1.

- Define a family of fuzzy sets Aj where j = 1, 2, ..., C is a fuzzy C-partitions in the universe of data points  $\overline{X}$ .
- Cj is the *d*-dimensional center of the j<sup>th</sup> cluster.
- Assign a membership degree to various data points (x) in each fuzzy set (fuzzy class). Hence, a single data point can have partial membership degree in more than one cluster. for eg:- the it data point in the jt cluster nave membership degree [41] E [0,1]
- The condition is that the sum of all the membership degrees for a single data point in all the clusters has to be unity (1). i.e. \_n

 $\sum_{j=1}^{n} \mu_{ij} = 1 \quad \forall \quad i = \{1, 2, 3, \dots, n\}$ total  $m^{a}$  of data points.

• Define a fuzzy c-partition matrix U for grouping a collection of n data points into c-dusters. The objective function J for a fuzzy C-partitions is given as

 $\frac{m c}{\int J(U_1 c) = \sum_{i=1}^{m} \sum_{j=1}^{m} (\mu_{ij})^m (d_{ij})^2}$ Objective Function  $\frac{m c}{\sum_{i=1}^{m} \sum_{j=1}^{m} (\mu_{ij})^m (d_{ij})^2}$ weights introduced to K-means

·To introduce this abovithm we define a sample set of n data point that we want to cluster

 $X = \{\overline{\mathcal{X}}_1, \overline{\mathcal{X}}_2, \overline{\mathcal{X}}_3, \ldots, \overline{\mathcal{X}}_n\}$ 

each data point  $\chi_i$  is defined by d teatures i.e.  $\overline{\chi_i} = \{\chi_{i1}, \chi_{i2}, \chi_{i3}, \ldots, \chi_{i0}\}$  where  $\underline{D} = no.$  of features

Dataset Features X  $\mathcal{D}^{\prime}$  $d_2$ d, dз d; ~ +7 bold (vector) z, multiple data pts. 22  $\chi_3$ Xi · · · · · Xij · · Xip Xii Xiz Xn 2 patapoints NXD matrix data points > Features

$$dij = d(\chi_j - C_j) = || (\mathcal{H}_i - C_j)|| = \left[\sum_{d=1}^{p} (\mathcal{H}_{id} - C_{jd})^2\right]^{1/2}$$

- $\mu_{ij}$  = membership of the ith data point in the jth cluster dij = Euclidean distance blue jth cluster center and ith data point Rid = dth feature of the ith data set
- m ∈ [1, ∞] weighing parameter controls the amount of fuzziness in the clustering process (Usually m=2)
- cj is the jth cluster center described by D features is represented in the vector form

 $C_j = \{ C_{j1}, C_{j2}, \ldots, C_{jD} \}$ 

Each cluster coordinates for every cluster can be calculated as follows n

$$C_{jd} = \frac{\sum_{i=1}^{n} (\mu_{ij})^{m} \mathcal{X}_{id}}{\sum_{i=1}^{n} (\mu_{ij})^{m}}$$

where d is a variable on the feature space i.e. d = 1, 2, 3, ... DOptimum fuzzy C-partitions will be obtained by  $J^*(U^*, c) = \min(J(U, c))$ 





| Example 1 <u> </u>                                                                                                                                                                                                         | ) in initial centroids (3£11)                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mu_i j = \beta_{agree}$ of membership of $z_i$ in                                                                                                                                                                        | tu clusterj.                                                                                                                                      |
| $\mu_{ij} = \frac{1}{\sum_{\substack{\substack{\mathcal{L} \\ \mathcal{K}=J}}}^{\mathcal{L}} \left( \frac{  \mathcal{Z}_i - \mathcal{L}_j  }{  \mathcal{X}_i - \mathcal{L}_k  } \right)^{\frac{2}{m-1}} \downarrow_{k=2}}$ | $d_{ij} =   \mathcal{X}_i - C_j   = \sum_{d=i}^{P} (\mathcal{X}_{id} - \mathcal{X}_{jd})^{P}$                                                     |
| $\mu_{ll} = \frac{1}{\left(\frac{2-3}{2-3}\right)^2 + \left(\frac{2-3}{2-11}\right)^2} = 0.99$                                                                                                                             | $\mu_{12} = \frac{1}{\left(\frac{2-11}{2-3}\right)^2 + \left(\frac{2-11}{2-11}\right)^2} = 0.01$                                                  |
| $\mu_{2} = \frac{1}{\left(\frac{3-3}{3-3}\right)^2 + \left(\frac{3-5}{3-11}\right)^2} = 1$                                                                                                                                 | $\mu_{22} = \frac{1}{\left(\frac{2-11}{2-3}\right)^2 + \left(\frac{2-11}{2-11}\right)^2} = 0$                                                     |
|                                                                                                                                                                                                                            |                                                                                                                                                   |
|                                                                                                                                                                                                                            |                                                                                                                                                   |
| $\mu_{\eta l} = \frac{1}{\left(\frac{\varkappa_{-\Xi}}{\varkappa_{-\Xi}}\right)^2 + \left(\frac{\varkappa_{-\Xi}}{\varkappa_{-ll}}\right)^2} = \infty$                                                                     | $\mu_{\eta_2} = \frac{1}{\left(\frac{\varkappa - 1!}{\varkappa - 3}\right)^2 + \left(\frac{\varkappa - 1!}{\varkappa - 1!}\right)^2} = \sim \sim$ |
|                                                                                                                                                                                                                            |                                                                                                                                                   |



|                   | 1          | 2            | 1 new                                   | 2 new        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Framola 2 · hivon filzzy chusters provent into in                                   | ish chustore                          |
|-------------------|------------|--------------|-----------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------|
| 2                 | 0.99       | 0.01         | 0.93                                    | 0.07         | $c_i' = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Engripe 2 . arren rucey causers, sorrord mes er                                     |                                       |
| 3                 | 1.00       | 0.00         | 0.98                                    | 0.02         | $C_2' = 9.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fuzzy Custers (Soft clusters)                                                       | Data point with                       |
| 4                 | 0.98       | 0.02         | 1.00                                    | 0.00         | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\chi_1$ $\chi_2$ $\chi_3$ $\chi_4$                                                 | partial membership                    |
| 5                 | 0.90       | 0.10         | 0.95                                    | 0.05         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $c_{1}: \begin{bmatrix} 0.99 \\ 0.986 \\ 0.993 \\ 0 \end{bmatrix}$                  | to multiple clusters                  |
| 6                 | 0.74       | 0.26         | 0.75                                    | 0.25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C2: \begin{bmatrix} 0.009 & 0.014 & 0.007 & 1 \end{bmatrix}$                       |                                       |
| /                 | 0.50       | 0.50         | 0.40                                    | 0.60         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
| 9                 | 0.10       | 0.90         | 0.01                                    | 0.99         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Crisp Clusters (Hard Clusters)                                                      |                                       |
| 10                | 0.02       | 0.98         | 0.01                                    | 0.99         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathcal{X}_1$ $\mathcal{X}_2$ $\mathcal{X}_3$ $\mathcal{X}_4$                     |                                       |
| 11                | 0.00       | 1.00         | 0.05                                    | 0.95         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     | pata points exclusively               |
|                   | c1         | 4.00         | c1 new                                  | 3.98         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     | belong to one cluster                 |
|                   | c2         | 9.46         | c2 new                                  | 9.26         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
|                   | CILC2      |              | $C1 \neq C2$                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | To convert fuzzy clusters into crisp cluste                                         | ers, assign each data                 |
|                   | at K=1     |              | at K=2                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | point to the cluster with the highest member                                        | rship value.                          |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(1 - \frac{1}{2}\chi_{1}, \chi_{2}, \chi_{3}) \sim \pi \mu_{i1} = 1  \mu_{i2} = 0$ |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(2. 2\pi4) \sim \mu \sim \mu = 0  \mu = 1$                                         |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Answer: with dustan CI- In. N. Not                                                  |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(1) = \{ y_{A} \}$                                                                 |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | same                                                                                | seed values                           |
| Example           | e 5: Ap    | ply FCM      | on D-                                   | Dimension    | nal feature space data sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Types of questions in exam: init                                                    | tial centers or                       |
| C=2               | D= 4       | L.           |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. K-Means Numerical init                                                           | tialisation matrix 0°                 |
|                   |            | ~            |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. FCM Numerical                                                                    | · · · · · · · · · · · · · · · · · · · |
| ( <b>J</b>        | Zı         | ~ <u>~</u>   | 13                                      |              | ) higher and in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial cuister centers or initialisation                                           | on matrix given                       |
| ai                | /          | 5            | 2                                       | /            | Transposed matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iselli valle Hxen so do Lo ger sam                                                  | a the alusters)                       |
|                   |            | 5            | 0                                       | 0            | $ \begin{array}{c} \chi = \left[ \mathcal{L}_{\mathcal{L}} \right] \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\ \chi \end{array} \right]} \\ \overline{ \left[ \begin{array}{c} \chi \\$ | · arta nico recordore, when when a                                                  | e pre cuiscos                         |
|                   | 4<br>r     | 9            | 9                                       | 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Values worrig lazzy E Means algorith                                                | under and                             |
| 0.4               | 9          | J            | 0                                       |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WHACTSLAND FLIN WAA Source grampas co                                               |                                       |
| 2.1               | = < 1.0.   | 4.5}         |                                         |              | Kint to confuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAL Paper - implement, the paper of tari                                            | MATLAR LADE.                          |
| X <sub>2</sub>    | = 15,5,    | 9,9}         | Stept                                   | : Initialisa | ation matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | write the by them cade for this                                                     | paper. Submit!                        |
| X                 | = 12,0,4   | 2,0)<br>2,0) | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              | XI N2 X2 X4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | pop =                                 |
| X4                | = 1.1.0.0  | ,2}          |                                         | 110) = 1     | т, 122 г., 1<br>7 с,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | first data point 12                                                                 |                                       |
|                   |            |              |                                         |              | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                       |
| $\langle \rangle$ |            |              |                                         |              | Assign randomly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                   |                                       |
| In                | Bi-Cluster | ing, we      | tari subs                               | et of the    | feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                                       |
|                   |            |              |                                         |              | proceed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9                                                                                 |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CI 2 this has less membership with C2                                               |                                       |
|                   |            |              |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L more 11 11 C,                                                                     |                                       |

### CLUSTER VALIDITY INDICES

·Used to evaluate the quality of clustering results. Helpful to Understand how well the data has been clustered.

## (1) Silhouette Index

The silhouett coefficient measures how similar an object is to its own cluster compared to other clusters.
Ranges from -1 to 1, where a high value indicates that the object is well matched to its own cluster and poorly matched to neighbouring clusters.
The silhouette coefficient can be calculated for individual data points and then averaged over all data points to get a global measure.

| s= b-a    |
|-----------|
| max (a,b) |

Procedural steps on now to compute the silhouette index for dustering

- 1) compute Unster Assignments! Begin by dustering your dataset Using a chosen clustering algorithm, such as K-Means, FCM, hierarchical clustering or DBSGAN. Assign each point to its corresponding subster.
- 2) Compute cluster centroids (optional): For some clustering algorithms, such as K-Means, FCM, compute the centroid of each cluster. This step is necessary if your clustering algorithm requires centroid based distances.
- 3) (ompute Average Distance to other points in the same cluster (a): For each it ada point, calculate the average distance (similarity) to all other data points within the same cluster. This distance measure can vary depending on the application, but commonly used distance metrics include Euclidean distance, Manhattan distance, or cosine similarity. Let's denote the value as a.

Example: Dataset with 3 clusters For each data point the silhowtte coefficient is calculated by combuting

a = average distance blw the point and all other points in the same cluster

- b = average distance blue the point and all points in the nearest neighbouring cluster
- A higher silhouetle coefficient indicates better clustering eq: s=0.6 indicates cluster assigned is apt for data bts.
- The silhouette index is a measure of how similar an object is to its own cluster compared to other clusters. It provides a way to access the quality of clustering results by measuring the concision within clusters and the seperation blue clusters. A high silhouette index indicates object is well clustered while a low silhouette index indicates object may be better assigned to a different cluster.

4) Compute Average Distance to Data Points in Neighbouring Clusters (b): For each it data point, calculate the average distance to all data points in the nearest neighbouring cluster. This means excluding data points from the same cluster as it. Let's denote this value as bi.

5) Compute Silhouttle Index for each data point: For each data point it, compute the silhouette index using

| Si | = | bi-ai      |
|----|---|------------|
|    |   | max(bi,ai) |

- · If  $a_i \approx b_i \approx 0$ ,  $s_i \approx 0$  indicating data point is on or very near the decision boundary between clusters.
- If ai << bi, Si≈ 1 Indicating data point is well clustered.</li>
  If bi << ai, si≈ -1 indicating data point may be assigned to wrong cluster.</li>

6) Compute overall silhouette Index: Once you have computed the silhouette index for each data point, calculate the average silhouette index across all data points to obtain the overall silhouette index for the substering result.

The formula for average silhouettl index s is:

 $S = \frac{1}{N} \sum_{i=1}^{N} S_{i}$ 

where N = total No. of data points

# (5) Unp Statistics Compares total intra-cluster variation for diff. Yalles

of K (no. of clusters) with their expected

6 Within - Cluster sum of Squares (WCSS) also known as inertra  $WCSS = \underbrace{\xi}_{1} \underbrace{z}_{rfC} ||z - \mu_i||^2 \qquad |ower WCSS|$ 

lower WCSS indicatesbetter clustering

- (7) Adjusted Band Index (ARI) measures similarity blue true latel 4 -
- <sup>8</sup> Fowires-Mallows Index (FMI)

 $FMI = \frac{TP}{(TP+FP)(TP+FN)}$ 

Some other quality indices 2 Davies - Bouldin Index  $\mathcal{DB}_{j} = \left(\frac{1}{m_{j}}\right) \underbrace{\sum_{j=1}^{K} \left[\frac{\sigma_{j} + \sigma_{j}}{\sigma_{j}}\right]}_{\frac{\sigma_{j}}{\sigma_{j}}}$ I inner cluster distance b/w (i & Ci. 3 Calinski Harabasz Indox ( Varlence Ratio Criterion) CH = B/w cluster dispersion x n-K 2 within cluster dispersion x -1 (4) Dunn Index compactness and seperation D= mins (mins (Inter cluster distance))

## LECTURE #9 MACHINE LEARNING AND SUPERVISED LEARNING

So far unsupervised learning in artificial intelligence

• Finding dusters or group or category labels and the no. of dusters or groups or categories directly from the data (in contrast to planification).

· More informally, finding natural groupings among objects.

## Machine Learning

Process of developing or obtaining a model (AIAgent) by learning from data (i.e. examples, experiences, etc.).

Normally any ML-based model is obtained by

- 1. Learning its parameters (supervised Learning, serni-supervised learning) 2. Learning structure (eg. no. of hidden layers of ANN, no. and type of
- rules for fuzzy models, graphs, etc) (supervised Learning, Semi-subervised Learning)
- 3. Learning hidden concepts based on certain attributes [e.g. dustering, biduotering, etc. in Unsupervised Learning)

## Types of Machine Learning

- · Unsubervised Learning ; Learning only from examples or data or experience, no corresponding labels (custering | Biculotering)
- Supervised Learning or Inductive Learning : Learning from examples or data or experience with corresponding labels (classification) regression)
- Semi-supervised Learning: Learning from examples or data or experience with only some not all the corresponding labels (classification)
- Reinforcement Learning: An agent interacting with the world makes observations, takes actions, and is rewarded or punished, it should learn to choose actions in such a way as to obtain a lot of reward (classification [ Regression)

## Oscam's razor's principle

· prefer simpler hypothesis over complex ones · Choose explanations with fewer assumptions

classification : a two step process

1) Model Development / Training define pretermined classes

2) Model Usage | Testing and Validation · classify unseen / tost samples · test set never part of training set · validation : more accuracy value, the better

Accuracy = # of correct classifications Total # of test cases

# Supervised Learning 1) Classification learn a discrete function / Learn a continuous function labelled data boolean | binary | multi-class $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

## CURVE FITTING

1) Least Squares Regression

2) Interpolation

' single curve representing trend

· fit cures passing directly two' data pts. · previse data ~ exact fit



|     | ~ | /            |  |
|-----|---|--------------|--|
|     |   | $\checkmark$ |  |
| ~ > | Q |              |  |

Least Squares Regression

Simple linear Regression path  

$$f(2i, y_i) \in \forall i = 1, ..., n$$
  
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$   
 $f(2i, y_i) \in \forall i = 1, ..., n$ 

7 5.5

5.95 -0.45 2.1

6 6.0

5.11

0.89 2.6

| Standard error after find as and a,                                                                                                                                 | Practic               | a Problem - 1                                         |                                  |               |             |              |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|----------------------------------|---------------|-------------|--------------|------------|
| $S_{r} = \sum (y_{i} - a_{0} - a_{1} x_{i})^{2}$                                                                                                                    | x<br>y                | 1 0.5                                                 | 2<br>2.5                         | 3<br>2.0      | 4           | 5            | 6.0        |
| standard error of estimate $S_{Y/R} = -\sqrt{\frac{S_r}{n-2}}$                                                                                                      | ei=y-y_cap<br>y-y_bar | -0.41<br>-2.9                                         | 0.75                             | -0.59<br>-1.4 | 0.57<br>0.6 | -0.77<br>0.1 | 0.8<br>2.0 |
| -spread around linear regression                                                                                                                                    |                       | sum(xi)                                               | 28<br>24                         |               |             | LINEAR REGRE | ESSION     |
| Std. Dev. of data points                                                                                                                                            |                       | sum(xi^2)<br>sum(xi*yi)                               | 140<br>119.5                     |               |             |              |            |
| $S_{t} = \sqrt{\frac{S_{t}}{n-1}} = \sqrt{\frac{\Sigma(y_{i} - \overline{y_{i}})^{2}}{\frac{N-1}{n-1}}} \qquad \qquad S_{t} = \Sigma(y_{i} - \overline{y_{i}})^{2}$ |                       | an<br>ao<br>Model                                     | 0.8393<br>0.07143<br>y=0.07143+0 | .8393x        |             |              |            |
| corelation contraction                                                                                                                                              |                       | Sr=sum(ei^2)<br>St=sum(y-ybar)^2<br>Sv=SOBT(St/(n-1)) | 2.9911<br>22.714<br>1.946        |               |             |              |            |
| $r = \sqrt{\frac{St - Sr}{1}}$                                                                                                                                      |                       | Sy/x=SQRT(Sr/(n-2))<br>r                              | 0.773                            |               |             |              |            |
| -improvement or error reduction due to describing He                                                                                                                |                       |                                                       |                                  |               |             |              |            |
| data in terms of straight line rather than ang.                                                                                                                     |                       |                                                       |                                  |               |             |              |            |
|                                                                                                                                                                     |                       |                                                       |                                  |               |             |              |            |

$$S_{ij} = \sqrt{\frac{S_{t}}{n-l}} = \sqrt{\frac{\Sigma(y_j - \overline{y_i})^2}{\frac{1}{n-l}}}$$

Polynomial Regression pata  

$$f(2i), y_i \in Y \in [1, ..., n]$$

$$Y = a_0 + a_1 \times + a_2 \times 2$$

$$e_i = Y_i - \hat{Y}_i = Y_i - (a_0 + a_1 \times i + a_2 \times i^2)$$

$$for iteria for best fit min \leq r = min \sum_{a_0, a_1, a_1 \in I}^{n} = min \sum_{a_0, a_1, a_2 \in I}^{n} = min \sum_{a_0, a_1, a_2}^{n} = (Y_i - a_0 - a_1 \times i - a_2 \times i^2)^2$$
Find  $a_0, a_1, a_2 = ?$ 

$$\frac{2Sr}{2a_0} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_1} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_1} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_2} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

$$\frac{2Sr}{2a_1} = -2\sum_{i=I}^{n} (Y_i - a_0 - a_1 \times i - a_2 \times i^2) \times i = 0$$

| Multiple linear Regression                                                                                                                                                                  |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                             | Given data      |
| $y = a_0 + a_1 x_1 + a_2 x_2$                                                                                                                                                               | {Xi,4i 9 7n=1,n |
| $e_i = Y_i - Y_i = (Y_i - a_0 - a_1 x_1 - a_2 x_2)$                                                                                                                                         |                 |
| $S_{\gamma} = \Sigma \ell_j^2$                                                                                                                                                              |                 |
| Find ao, a, az to minimize Sr.                                                                                                                                                              |                 |
| n                                                                                                                                                                                           |                 |
| $\frac{\partial S_{r}}{\partial a_{0}} = -2 \sum_{i \ge l} \left( \mathcal{U}_{i} - a_{0} - \mathcal{A}_{l} \mathcal{X}_{l} - a_{2} \mathcal{X}_{2i} \right) = 0$                           | $\mathcal{O}$   |
| n                                                                                                                                                                                           |                 |
| $\frac{\partial Sr}{\partial a} = -2 \sum_{i=1}^{\infty} \left( \mathcal{U}_i - \mathcal{A}_0 - \mathcal{A}_1 \mathcal{X}_{1i} - \mathcal{A}_2 \mathcal{X}_{2i} \right) \mathcal{X}_{1i} =$ | 0@              |
|                                                                                                                                                                                             |                 |
| $\frac{\partial Sr}{\partial q_2} = -2 \sum_{i=1}^{n} \left( \mathcal{Y}_i - a_0 - \mathcal{A}_i \mathcal{X}_{i} - a_2 \mathcal{X}_{2i} \right) \mathcal{X}_{2i} = C$                       | ? _ <i>E</i>    |
|                                                                                                                                                                                             |                 |

| $(1) \Longrightarrow$ | $\sum Y_i = n$           | a0 + 9, 2  | $z_i + a_i$           | EXi <sup>2</sup> | (1)  |
|-----------------------|--------------------------|------------|-----------------------|------------------|------|
|                       |                          |            | . 2                   |                  |      |
| $(a) \Longrightarrow$ | $\geq \chi_i \gamma_i =$ | ao ZXi +   | $-Q_1 \geq \chi_i^2$  | + 0, 2213        | (z') |
|                       |                          |            |                       |                  |      |
| (3) =>                | Z 24: =                  | 90 Z X 2 + | $-a, \Sigma \chi i^3$ | + a2 EXiª        | (z') |
|                       |                          |            |                       |                  | 2.27 |

equivalent to solving a system of 3 simultaneous linear equs In general, to fit mth order polynomial

$$Y = a_0 + a_1 \varkappa + a_2 \varkappa^2 + a_3 \varkappa^3 + \cdots + a_m \varkappa^m$$

Using least-squares regression is equivalent to solving a system of (m+1) simultaneous linear eq<sup>n</sup>s.

standard error



| NAO                   | + a, z,           | x,; + a2                             | ε <sub>22</sub> =          | E4i        |                                    | -0' |
|-----------------------|-------------------|--------------------------------------|----------------------------|------------|------------------------------------|-----|
| Z Rii ad              | 0+ a1 =           | - X11 <sup>2</sup> +                 | $Q_2 \in \mathcal{Z}_{11}$ | X2i =      | モルリリ                               | @'  |
| $\gtrsim \chi_2$ ; ao | $+ a_1 \in$       | Xii X zi                             | + a2EX.                    | $2j^2 = 2$ | $\mathcal{Z}_{2i} \mathcal{Y}_{i}$ | -3' |
| <br>n                 | ₹χi               | ≥่่่่                                | ao                         |            | <br>≂y;                            |     |
| Zχi                   | ZX11 <sup>2</sup> | ₹ <i>π</i> i <i>X</i> <sub>N</sub> i | <i>O</i> ,                 | =          | $\gtrsim_{\mathcal{X}_{1i}y_{i}}$  |     |
| _≥xi                  | ≥X1i Xi           | ≈χ <sub>ӥ</sub> ²_                   | _ a2 _                     |            | Ξλά γι                             |     |
| standa                | rd error          | - Syln=                              |                            | 2          |                                    |     |
|                       |                   |                                      | V m-                       | (m+1)      |                                    |     |

General linear least squares  

$$y = a_0 z_0 + a_1 z_1 + a_2 z_2 + \cdots + a_m z_m = \sum_{i=0}^{m} a_i z_i$$
(m+1) different functions  
special cases  
1. simple linear LSR z\_0=1 z\_1 = Z z\_i=0 + iz\_2  
2. Polynomial LSR z\_i= Z^i (Z\_0=1) z\_1 = Z, z\_2 = Z^{(i-1)} z\_1  
3. Multiple linear LSR z\_0=1 z\_i=z\_1 for i > 1  
"linear"  $\implies$  modifs dependence on  $a_i$ 's is linear  
phe functions can be righty non-binear.  
 $Sr = z e_i^2 = z(y_i - \hat{y_i})^2$   
mun  $Sr$  to get  $a_j$ ,  $j = 0, 1, 2 \dots m = ?$ 

# Interpolation

(iven (n+1) data points (Xi,4i) i=0,1,...n there is one and only one polynomial of order n that passes through all the points.

(A) Newton's Divided Difference Interpolating Polynomials Linear Interpolation

Given (Xo, 40) and (X,, 4,)

 $\frac{Y_{1}-Y_{0}}{\chi_{1}-\chi_{0}} = \frac{Y-Y_{0}}{\chi-\chi_{0}}$   $f(\chi) = Y_{0} + \left(\frac{Y_{1}-Y_{0}}{\chi_{1}-\chi_{0}}\right) \times (\chi-\chi_{0})$   $(\Rightarrow first order interpolation)$ 



$$\left(\frac{f_{1}(2) - ln2}{ln2}\right) \times 100 = \frac{0.358 - 0.8931}{0.6931} \times 100 = 48.3.1.$$

imaller interval provides bottler action

| Given:- e | $l_{\mu}l=0$                                          | find In 2.           | = 2                                          |        |
|-----------|-------------------------------------------------------|----------------------|----------------------------------------------|--------|
|           | n4=1.386294                                           |                      |                                              |        |
| Л         | n6=1.791759                                           |                      |                                              |        |
|           |                                                       |                      |                                              |        |
| Soln:-    | $b_0 = Y_0 = 0$                                       |                      |                                              |        |
|           | b1= 41-40 =                                           | 1-386294 -           | 0 = 0.46                                     | 21     |
|           | $\mathcal{X}_1 - \mathcal{X}_0$                       | 4/                   |                                              |        |
|           | $b_2 = \frac{y_2 - y_1}{y_2 - y_1} - \frac{y_1}{y_2}$ | 1-40 = 1.79          | 17- 1.386 -                                  | 0.4621 |
|           | X2-X1 7                                               | Ч, <i>- Ио</i>       | 6-4                                          |        |
|           | 72-20                                                 |                      |                                              | ·      |
|           |                                                       |                      | 0 ~ /                                        |        |
|           | = -0.0518                                             | 731                  |                                              |        |
|           |                                                       |                      |                                              |        |
|           | $p_2(\pi) = b_0 + b_1($                               | $(\pi - \chi_0) + b$ | $2(\mathcal{R}-\mathcal{X}_{l})(\mathcal{X}$ | ~ Xp)  |
|           | $L_{3} = 0 + 0.462$                                   | 2(2 - 1) - 0         | ·0518 (x-4)                                  | (2-1)  |
|           |                                                       |                      |                                              |        |
| f         | 2(2) = 0.565844                                       |                      |                                              |        |
|           |                                                       |                      |                                              |        |
|           | f2(2) - lh2 ×100                                      | p = 18.4.            |                                              |        |
|           | ln2                                                   |                      |                                              |        |
|           |                                                       |                      |                                              |        |
|           |                                                       |                      |                                              |        |
|           |                                                       |                      |                                              |        |
|           |                                                       |                      |                                              |        |
| (C) Gener | al Form of New                                        | storis Inter         | polaring po                                  | 0/42   |
|           |                                                       |                      |                                              |        |
| Given     | (n+1) data point                                      |                      |                                              |        |
| fit       | nthe degree pol                                       | yn                   |                                              |        |

$$fn(x) = b_0 + b_1 (x - x_0) + b_2 (x - x_0) (x - x_1)$$

$$+ \cdots + bn(x - x_0) (x - x_1) \cdots (x - x_{n-1})$$

$$= \sum_{i=0}^{n} b_i \prod_{j=0}^{i-1} (x - x_j)$$

$$find \ b_0 \cdot b_1 \cdot \dots \cdot b_n \cdot \dots$$

$$x = x_0$$

$$Y_0 = b_0 \ \text{ or } b_0 = Y_0$$

$$= x_1 \quad Y_1 = b_0 + b_1 (x - x_0) \Rightarrow b_1 = \frac{y_1 - y_0}{x_1 - x_0}$$

$$b_1 = f(x_1, x_0) = \frac{y_1 - y_0}{x_1 - x_0}$$

$$\chi = \chi_n$$

X

$$bn = f \mathcal{L} \mathcal{R} n, \mathcal{X}_{n-1}, \dots, \mathcal{X}_{1,2} \mathcal{X}_{0} \mathcal{J} = \frac{f \mathcal{L} \mathcal{R} n, \dots \mathcal{X}_{1} \mathcal{J} - f \mathcal{L} \mathcal{R}_{n-1}, \dots \mathcal{X}_{0}}{\mathcal{R} n - \mathcal{X}_{0}}$$

straightforward Approach

Y= ao + a1x + a2x2 [ quadratic function]

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 = 4_0 \\ a_0 + a_1 x_1 + a_2 x_1^2 = 4_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 = 4_2 \end{cases}$$

| $\square$ | 1 | Xo | $\chi_{0^2}$ | [ ao [ | 1 | [ 40]  |  |
|-----------|---|----|--------------|--------|---|--------|--|
|           | 1 | H1 | X12          | a,     | 2 | Ц,     |  |
|           | 1 | 22 | R22 _        | , a2_  | ļ | - 42 J |  |

| r ao ' | 1 |     | Xo | 202 7 | -1 ( 4p~ | ) |
|--------|---|-----|----|-------|----------|---|
| a,     | Ξ | t   | Хı | 2,2   | 4,       |   |
| an     | J | - 1 | ЯL | N12 J | L Y L    |   |

(D) Lagrange Interpolating Polynomials

repormation of the Newton's interpolating poly" that avoids the computation of dividea diff.

 $f_n(\pi) = \sum_{i=0}^n \mathcal{L}_i(\pi) f(\mathcal{H}_i)$ 

where 
$$h_i(x) = \prod_{j=0}^n j \neq i$$
  $\frac{x - x_j}{x_i - x_j}$ 

Unear Interpolation 
$$(n=1)$$
  
 $f_1(n) = h_0(x)f(x_0) + h_1(x_0)f(x_0)$   
 $= \frac{x-x_1}{x_0-x_0} \quad y_0 + \frac{x-x_0}{x_1-x_0} \quad y_0$   
Second order interpolation  $(n=2)$ 

$$f_{2}(\pi) = h_{0}(\pi) \psi_{0} + h_{1}(\pi)\psi_{1} + h_{2}(\pi) \psi_{2}$$

$$= \left(\frac{\kappa - \kappa_{1}}{\pi_{0} - \kappa_{1}}\right) \left(\frac{\kappa - \kappa_{2}}{\pi_{0} - \kappa_{2}}\right) \psi_{0} + \left(\frac{\kappa - \kappa_{2}}{\pi_{1} - \kappa_{2}}\right) \left(\frac{\kappa - \kappa_{0}}{\pi_{1} - \kappa_{0}}\right) \psi_{1}$$

$$+ \left(\frac{\kappa - \kappa_{1}}{\pi_{2} - \kappa_{1}}\right) \left(\frac{\kappa - \kappa_{0}}{\pi_{2} - \kappa_{0}}\right) \psi_{2}$$

eg:- ln1=0 Supervised Learning: Artifiticial Neural Network (ANN) lh2=7 In 4=1.386 based Classifiers In6= 1.791 Antificial Neural Network  $f_2(\mathbf{x}) = \left(\frac{\mathbf{x} - \mathbf{4}}{\mathbf{1} - \mathbf{4}}\right) \left(\frac{\mathbf{x} - \mathbf{6}}{\mathbf{1} - \mathbf{6}}\right) \mathbf{0} + \left(\frac{\mathbf{x} - \mathbf{1}}{\mathbf{6} - \mathbf{1}}\right) \left(\frac{\mathbf{x} - \mathbf{4}}{\mathbf{6} - \mathbf{4}}\right) \mathbf{ln}\mathbf{6}$ · Human Brain  $+ \left(\frac{\chi - 1}{4 - 1}\right) \left(\frac{\chi - 6}{4 - 6}\right) l_{1} 4 = 0.565$ basic computation unit in nervous system contains a nerve cell (Neuron) + synaptic links (synapses)  $f_{1}(x) = \left(\frac{2-4}{1-4}\right) 0 + \left(\frac{2-1}{4-1}\right) 1.386 = 0.46209$ · A natural neuron has three major components - Dendrites (Receptor or Input node) Cell Body (soma) - Axon Endings / Transmitter buds or Output Nodes) Mond mit co \_ autput aron cerd y

ANN

## Properties and Capabilities of ANN

- Non-Unearity
- Input Dutput mapping
- · Adaptivity
- · Degnee of correctness of Response / output · Fault Tolerance
- · Implementability (using VLSI)
- Uniformity of Analysis and Pesign
- · Neurobiological Analogy
- · Contextual Information

1943 ~ Mu (ulloch and Pitts ~ earliest mathematical models

\$ (1943~ Muculloch and Pitts)

Perceptron simplest feed forward linear binary classifier

f(n)= { 1 ; w.x+b70 ; otherwise

How does the ANN Learn? understanding learning

Artificial Neuron Wo<sub>synapse</sub> Ho Artificial Neural axon from neuron impulses carried toward Learning dendrite cell body dendrites f(Zwixi+b) cell body axon Wix, nucleus  $\sum w_{i} \varkappa_{i} + \flat$ axon output axon terminals activation WZXZ function Cell body branches of axon, takes the bias (6) decision weight (flid takes (W:) input decision)  $(0 \le Wi \le 1) \vee$ 2Ci varies Oto 1 only





 $W_1 \chi_1 = 1$ Perceptron Training t = 1.5Output =  $\int 1$  $if \leq w_i \mathcal{Z} > t$ W2 X2 =1 60 otherwise 1+1= 2>1.5 = 4K=1 Bias can also be added in Ewixi

Backpropagation Algorithm R:  $z_{\ell} = \mathcal{O}\left(\sum_{i=1}^{m} w_{\ell i} \mathcal{X}_{i}\right) = \mathcal{O}(a_{\ell})$ WI 6 (·) 66.) vje Wli xi. al= EWLiXi bj= EVjiZL  $Y_i = \mathcal{O}(b_i)$ output of let nuron wen Zn m  $\overline{}$ Input 0/P layer hidden Layer Layor 9 9

$$\begin{split} & \mathcal{G}(\mathbf{x}) = \mathbf{z} \quad \therefore \quad \mathcal{G}'(\mathbf{x}) = 1 \\ & \mathcal{A}_{L} = \sum_{i=1}^{m} \mathcal{V}_{Li} \, \mathcal{X}_{i} \qquad \qquad \mathcal{Z}_{L} = \mathcal{G}(\mathcal{A}_{i}) \\ & b_{j} = \sum_{i=1}^{m} \mathcal{V}_{ji} \, \mathcal{X}_{i} \qquad \qquad \mathcal{G}(b_{j}) = b_{j} \implies \mathcal{G}'(b_{j}) = 1 \\ & \mathcal{C}_{j} = \mathcal{Y}_{j} - \hat{\mathcal{Y}}_{j} \qquad \qquad \qquad \mathcal{V}(\mathcal{K}+1) = \mathcal{W}(\mathcal{K}) + \mathcal{D}\mathcal{W}(\mathcal{K}) \qquad \qquad b_{i} \mathcal{W}^{1} / \mathcal{P} \mathcal{P} \mathcal{W}_{i} \mathcal{A} \mathcal{D}_{i} \\ & \mathcal{V}(\mathcal{K}+1) = \mathcal{W}(\mathcal{K}) + \mathcal{D}\mathcal{W}(\mathcal{K}) \qquad \qquad b_{i} \mathcal{W}^{1} / \mathcal{P} \mathcal{P} \mathcal{W}_{i} \mathcal{A} \mathcal{D}_{i} \\ & \mathcal{V}(\mathcal{K}+1) = \mathcal{W}(\mathcal{K}) + \mathcal{D}\mathcal{W}(\mathcal{K}) \qquad \qquad b_{i} \mathcal{W}^{1} / \mathcal{P} \mathcal{P} \mathcal{W}_{i} \mathcal{A} \mathcal{D}_{i} \\ & \mathcal{V}(\mathcal{K}+1) = \mathcal{W}(\mathcal{K}) + \mathcal{D}\mathcal{W}(\mathcal{K}) \qquad \qquad b_{i} \mathcal{W}^{1} / \mathcal{P} \mathcal{P} \mathcal{W}_{i} \mathcal{D}_{i} \\ & \mathcal{V}(\mathcal{K}+1) = \mathcal{W}(\mathcal{K}) + \mathcal{D}\mathcal{W}(\mathcal{K}) \qquad \qquad b_{i} \mathcal{W}^{1} / \mathcal{D} \mathcal{D}_{i} \\ & \mathcal{V}(\mathcal{L}) = \mathcal{D}_{i} \mathcal{D}_{i} \\ & \mathcal{D}(\mathcal{L}) = \mathcal{D}_{i} \\ & \mathcal{D}(\mathcal{L}) = \mathcal{D}_{i} \mathcal{D}_{i} \\ & \mathcal{D}(\mathcal{L}) = \mathcal{D}(\mathcal{D}_{i} \\ & \mathcal{D}(\mathcal{L}) \\ & \mathcal{D}(\mathcal{L}) = \mathcal{D}(\mathcal{D}_{i} \\ & \mathcal{D}(\mathcal{D}) \\ & \mathcal{D}(\mathcal$$

$$weight change blw 1/P and hidden zoyer ~ Gradient Descent
Multiple = -\eta \frac{\partial E}{\partial w_{j,l}} = -\eta \frac{\partial E}{\partial z_{0}} \times \frac{\partial z_{l}}{\partial a_{l}} \times \frac{\partial a_{l}}{\partial w_{l}};
= -\eta \frac{\partial (u_{l} - \hat{u}_{j,l})}{\partial z_{l}} \times \sigma'(a_{l}) \times \pi;
= -\eta \Xi C_{j} \frac{\partial (u_{l} - \hat{u}_{l,l})}{\partial z_{l}} \times z_{l}(1 - z_{l}) \pi; \qquad \text{for sigmoid};
= -\eta \Xi C_{j} \left(\frac{\partial}{\partial z_{l}}(u_{j} - \Xi v_{j,l} - z_{l})\right) z_{l}(1 - z_{l}) \pi;
= +\eta \Xi C_{j} v_{j,l} z_{l}(1 - z_{l}) \pi;
\Delta w_{li} = \eta S_{l} \pi; \qquad S_{l} = \left[\Xi v_{j,l} e_{j}(1 - \hat{u}_{j}) \hat{v}_{j} v_{j,l} z_{l}(1 - z_{l})\right]$$

Weight change blw ~ (radient pescent Method  
widdle and o/p layer  

$$\begin{aligned} \Delta V_{j,l} &= -\eta \frac{\partial E}{\partial V_{j,l}} = -\eta \frac{\partial E}{\partial V_{j,l}} = -\eta e_j \frac{\partial e_j}{\partial V_{j,l}} \\ V_{j,l} contributes only for e_j. \\ &= -\eta e_j \frac{\partial (C_j - \hat{q})}{\partial V_{j,l}} = -\eta e_j \frac{\partial}{\partial V_{j,l}} (\Psi - \sum_{k=1}^{n} V_{j,k} < e_k) \end{aligned}$$

$$\begin{aligned} \Delta V_{j,l} &= +\eta e_j ze \\ \text{In general.} \end{aligned}$$

$$V_{j,l} (K+l) = V_{j,l} (K) + \eta e_j o'(a_j) z_l \\ \end{aligned}$$

$$\begin{aligned} \Delta V_{j,l} &= \eta e_j \hat{V}_j (l - \hat{V}_j) z_l \\ &= +\eta e_j z_l \end{aligned}$$

When output layor has activation function that  

$$\Delta Y_{jl} = \eta e_j z_l \, 6'(q_j) \quad \text{where} \quad 6'(q_j) = \hat{Y}_j \, (1 - \hat{Y}_j)$$

$$DW_{li} = \eta S_i \tau_i \qquad \text{where} \quad 6_l = \sum_{q} e_j \, 6'(q_j) \, Y_{jl} \, 6'(q_l)$$

$$\sigma r \, S_l = \left[\sum_{q} e_j \, \hat{Y}(1 - \hat{Y}_j) \, Y_{jl} \right] Z_l \, (1 - z_l)$$



# Performance Measures for Classifiers

1) Accuracy 2) PPV (Precision or positive predictive value) 3) Recall or sensitivity or Hit Rate 4) confusion matrix 5) FI Score 6) specificity or True Negative Rate (TNR) 7) Receiver operating characteristics (ROC) curve 8) Area under Roc curve (AUC) 9) Efficiency deal with noise and missing value 10) Robustness able to change scale 11) Salability (2) Interpratibility 13) compactness of the model size of decision tree In Regression -> RMSE -> is used mostly to check quality.

| How to ensure ANN has been trained well?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a love detect -) training + teating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{1}{70^{1/2}} = \frac{1}{70^{1/2}} = \frac{1}{30^{1/2}} = \frac{1}{100} = \frac$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2) small dataset -> Repeat 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a o'l lo'l times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| cross-validation for diff. train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| $() Accuracy = \frac{\# \circ f \text{ correct classification}}{\# \circ f \text{ total test cases}}$           |                                      |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| $ Precision = \frac{TP 1}{TP + FP V} $                                                                          | Strue Positive 2<br>False Positive S |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                            |                                      |
|                                                                                                                 | TP FP<br>FN TN                       |
| lg:- Hind confusion matrix?<br>find precision, recall?                                                          |                                      |
| $CM = \begin{bmatrix} 30 & 0 \\ 30 & 100 \end{bmatrix} \qquad P = \frac{50}{30+0} = 1 \qquad r = -\frac{1}{20}$ | $\frac{30}{30+30} = \frac{1}{2}$     |
|                                                                                                                 |                                      |

| (5) PPV=I-FDR                                      |                        |
|----------------------------------------------------|------------------------|
|                                                    |                        |
| $\rho = PPV = TP = 1 - FDR$                        |                        |
| $\frac{1}{TP + FP}$                                |                        |
|                                                    |                        |
| TPR=1-FNR                                          |                        |
| $\gamma = TPR = TP = TP = I - FNR$                 |                        |
| P TP+FN                                            | Endsem Exam            |
|                                                    | $\checkmark$           |
| Accuracy = TP + TN                                 | 3 hours exam           |
| TP+IN+FP+ FN                                       | $\checkmark$           |
|                                                    | Full syllabus          |
| where, PPY positive predictive value               | (before + after MS)    |
| FOR false discovery rate                           |                        |
| TPR true positive rate                             |                        |
| FNR false negative rate                            |                        |
| Exam                                               |                        |
| Confusion Matrix is for Binary Classifier          |                        |
| 7 eg:- in exam given contusion matrix, find        |                        |
| precision, recall, accuracy, PPV, sensitivity, his | t rate, FOR, TPR, FNR. |
|                                                    |                        |

| $CM = \begin{bmatrix} 120 & 15 \end{bmatrix} = 135$                      |
|--------------------------------------------------------------------------|
| [ 25 90 ] 115                                                            |
| 145 105                                                                  |
|                                                                          |
|                                                                          |
| $b=0.88 = PPV \qquad FDR = 1 - p = 0.12$                                 |
| $\gamma = 0.827 = sensitivity = hit rate$                                |
| A= 0.84                                                                  |
|                                                                          |
|                                                                          |
| (6) FI Score (popular)                                                   |
|                                                                          |
| FI= harmonic mean of precision and scriptivity                           |
|                                                                          |
| $F_i = \frac{2}{2} = 2\rho r = 2T\rho$                                   |
| Vp + I/r $p+r$ $2tp+FP+FN$                                               |
|                                                                          |
| $\bigcirc$ Specificity = TNR = <u>TP</u> = <u>TP</u> = 1-FPR = <u>TN</u> |
| P TP + FN TN + FP                                                        |
|                                                                          |
|                                                                          |



- → AUC = 1, Closer to 1 is better Area under Roc curve
- -> AUC= 0.5 for random classifier

## Support Vector Machine (SYM)

- ~ Supervised Varning ~ Classification & Regression Analysis ~ PUVLoped by Vladmir Vapnik
- ~ BLOTE SYM, ANN Was most UB. But now SYM >> ANN.
- ~ SVM gives global optimum unlike ANM that gives local optimum.

| Problem State | ment 41                                                                       | $\chi_{i}$                     | Ri, Xn                                            | n data ph.           |
|---------------|-------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|----------------------|
|               |                                                                               | $\longrightarrow z$            | Ri has m di                                       | mensions             |
| carl Xi belor | igs to one of the                                                             | two classes 2                  | abilled by +1                                     | and -1.              |
| training!-    | (A1, 41)                                                                      | $(\chi_n, \eta_n) \neq \alpha$ | <i>zi E IR<sup>M</sup>, Yi E</i><br><i>zi</i> ={; | {+1,-1}<br>«أ, 22, · |
| Find best     | seperating hyper                                                              | plane W.Z                      | +b=0 hy,                                          | perplane             |
| f(n)=         | $= \mathcal{W}_{1} \mathcal{Z}_{1} + \mathcal{W}_{2} \mathcal{X}_{2} + \cdot$ | · + Wm Zm + E                  | p=0                                               |                      |

(Assume plane is a classifier hyperplane for linearly seperable data)

Kuhn Tucker theorem (KT)  
Step]: Solve primal minimization problem  
min primal variables 
$$h : w, b$$
  
 $\frac{\partial h}{\partial w} = 0 \implies w^* = \sum_{i=1}^{n} \alpha_i y^i x^i - 0$   
 $\frac{\partial L}{\partial w} = 0 \implies \sum_{i=1}^{n} \alpha_i y_i = 0 \implies \sum_{i=1}^{n} \alpha_i y_i = 0 - 2$  yitakes  
 $\frac{\partial L}{\partial b} = 0 \implies \sum_{i=1}^{n} \alpha_i y_i = 0 \implies \sum_{i=1}^{n} \alpha_i = 0 - 2$  yitakes  
primal variables are  $w, b \rightarrow \min \Rightarrow \frac{\partial L}{\partial b} = 0$   
 $\frac{\partial L}{\partial b} = 0$   
Step 2: solve dual maximization problem  
 $\max_{i=1}^{n} \max_{i=1}^{n} (w^*, b^*, \alpha)$   
 $\frac{\partial L}{\partial a} = 0$ , for  $\alpha_1^*, \alpha_2^*, \dots, \alpha_n^* = \max_{i=1}^{n} h(w^*, b^*, \alpha)$ 

dual lagrangion at optimal parameters w\*, b\* for max. under +ve vonstraints. 9i≥0, i Cl,2, ...n ≥riy;=0 i>1

$$h(\omega^*, b^*, q) = \Xi q_i - \frac{1}{2} \stackrel{n}{\underset{j=1}{\mathcal{E}}} q_i q_j q_j q_j^{iT} \chi^j$$

 $\begin{array}{c} \bigcirc \\ \blacksquare \\ \blacksquare \\ (Exam \quad question) \end{array}$